K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 6 2018

e)\(\frac{\left(x+5\right)^2+\left(x-5\right)^2}{x^2+25}\)

=\(\frac{x^2+10x+25+x^2-10x+25}{x^2+25}\)

=\(\frac{2x^2+50}{x^2+25}\)

=\(\frac{2\left(x^2+25\right)}{x^2+25}\)

\(=2\)

Đúng như đáp án bạn nha

16 tháng 11 2017

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

55555555555555555

666666666666666666666666666

88888888888888888888

21 tháng 6 2018

\(a,=64x^3-48x^2+12x-1-\left(64x^3+12x-48x^2-9\right)\)

       \(=\left(64x^3-64x^3\right)+\left(48x^2-48x^2\right)+\left(12x-12x\right)+\left(9-1\right)\)

        \(=8\)  => ko phụ thuộc vào biến x

\(b,=2\left(x+y\right)\left(x^2-xy+y^2\right)-3\left(x^2+y^2\right)\)

thay x+y=1 vào 

\(=2\left(x^2-xy+y^2\right)-3\left(x^2+y^2\right)\)

\(=2x^2-2xy+2y^2-3x^2-3y^2\)

\(=-\left(x^2+2xy+y^2\right)=-\left(x+y\right)^2=-1\)  =>ko phụ thuộc vào biến

\(c,=x^3+3x^2+3x+1-x^3+3x^2-3x+1-6\left(x^2-1\right)\)

      \(=6x^2+2-6x^2+6=8\)

\(d,\frac{\left(2x+5\right)^2+\left(5x-2\right)^2}{x^2+1}=\frac{4x^2+20x+25+25x^2-20x+4}{x^2+1}=\frac{29\left(x^2+1\right)}{x^2+1}=29\)

11 tháng 5 2020

\(x^3-6x^2+5x+12>0\\ < =>\left(x^3-5x-x+5x\right)+12>0\\ < =>\left[\left(x^3-x\right)-\left(5x-5x\right)\right]+12>0\\ < =>x^2+12>0\\ < =>x^2>-12\\ =>x\in R\\ BPTcóvôsốnghiem\)

26 tháng 11 2017

) \(\dfrac{x^3+8y^3}{2y+x}\)

\(=\dfrac{x^3+\left(2y\right)^3}{x+2y}\)

\(=\dfrac{\left(x+2y\right)\left[x^2+x.2y+\left(2y\right)^2\right]}{x+2y}\)

\(=x^2+2xy+4y^2\)

b) \(\dfrac{a-1}{2\left(a-4\right)}+\dfrac{a}{a-4}\) MTC: \(2\left(a-4\right)\)

\(=\dfrac{a-1}{2\left(a-4\right)}+\dfrac{2a}{2\left(a-4\right)}\)

\(=\dfrac{a-1+2a}{2\left(a-4\right)}\)

\(=\dfrac{3a-1}{2\left(a-4\right)}\)

c) \(\dfrac{x^3+3x^2y+3xy^2+y^3}{2x+2y}\)

\(=\dfrac{\left(x+y\right)^3}{2\left(x+y\right)}\)

\(=\dfrac{\left(x+y\right)^2}{2}\)

d) \(\left(x-5\right)^2+\left(7-x\right)\left(x+2\right)\)

\(=\left(x^2-2.x.5+5^2\right)+\left(7x+14-x^2-2x\right)\)

\(=x^2-10x+25+7x+14-x^2-2x\)

\(=39-5x\)

e) \(\dfrac{3x}{x-2}-\dfrac{2x+1}{2-x}\)

\(=\dfrac{3x}{x-2}+\dfrac{2x+1}{x-2}\)

\(=\dfrac{3x+2x+1}{x-2}\)

\(=\dfrac{5x+1}{x-2}\)

h) \(\dfrac{1}{3x-2}-\dfrac{1}{3x+2}-\dfrac{3x+6}{4-9x^2}\)

\(=\dfrac{1}{3x-2}-\dfrac{1}{3x+2}+\dfrac{3x+6}{9x^2-4}\)

\(=\dfrac{1}{3x-2}-\dfrac{1}{3x+2}+\dfrac{3x+6}{\left(3x-2\right)\left(3x+2\right)}\) MTC: \(\left(3x-2\right)\left(3x+2\right)\)

\(=\dfrac{3x+2}{\left(3x-2\right)\left(3x+2\right)}-\dfrac{3x-2}{\left(3x-2\right)\left(3x+2\right)}+\dfrac{3x+6}{\left(3x-2\right)\left(3x+2\right)}\)

\(=\dfrac{\left(3x+2\right)-\left(3x-2\right)+\left(3x+6\right)}{\left(3x-2\right)\left(3x+2\right)}\)

\(=\dfrac{3x+2-3x+2+3x+6}{\left(3x-2\right)\left(3x+2\right)}\)

\(=\dfrac{3x+10}{\left(3x-2\right)\left(3x+2\right)}\)

27 tháng 11 2017

câu f ,g đâu

19 tháng 7 2020

a) ( 4x - 1 )3 - ( 4x - 3 )( 16x2 + 3 )

= 64x3 - 48x2 + 12x - 1 - ( 64x3 + 12x - 48x2 - 9 ) ( chỗ này bạn chịu khó nháp nhé )

= 64x3 - 48x2 + 12x - 1 - 64x3 - 12x + 48x2 + 9

= -1 + 9 = 8 

Vậy biểu thức không phụ thuộc vào x ( đpcm )

b) ( x + 1 )3 - ( x - 1 )3 - 6( x + 1 )( x - 1 )

= x3 + 3x2 + 3x + 1 - ( x3 - 3x2 + 3x - 1 ) - 6x2 + 6

= x3 + 3x2 + 3x + 1 - x3 + 3x2 - 3x + 1 - 6x2 + 6

= 1 + 1 + 6 = 8

Vậy biểu thức không phụ thuộc vào x ( đpcm )

c) \(\frac{\left(x+5\right)^2+\left(x-5\right)^2}{x^2+25}\)

\(=\frac{x^2+10x+25+x^2-10x+25}{x^2+25}\)

\(=\frac{2x^2+50}{x^2+25}\)

\(=\frac{2\left(x^2+25\right)}{x^2+25}=2\)

Vậy biểu thức không phụ thuộc vào x ( đpcm )

19 tháng 7 2020

a, \(\left(4x-1\right)^3-\left(4x-3\right)\left(16x^2+3\right)\)

\(=64x^3-32x^2+4x-16x^2+8x-1-64x^3-12x+48x^2+9\)

\(=8\)

Vậy biểu thức thức không phụ thuộc vào biến x 

b, \(\left(x+1\right)^3-\left(x-1\right)^3-6\left(x+1\right)\left(x-1\right)\)

\(=x^3+3x^2+3x+1-x^3+3x^2-3x+1-6x^2+6\)

\(=8\)

Vậy biểu thức không phụ thuộc vào biến x 

c, \(\frac{\left(x+5\right)^2+\left(x-5\right)^2}{x^2+25}=\frac{x^2+10x+25+x^2-10x+25}{x^2+25}\)

\(=\frac{2x^2+50}{x^2+25}=\frac{2\left(x^2+25\right)}{x^2+25}=2\)

Vậy biểu thức không phụ thuộc vào biến x 

21 tháng 6 2016

\(\left(4x-1\right)^3-\left(4x-3\right)\left(16x^2+3\right)\)

\(=\left(4x\right)^3-3.\left(4x\right)^2.1+3.4x.1^2-1^3-\left(4x-3\right)\left(16x^2+3\right)\)

\(=64x^3-48x^2+12x-1-64x^3-12x-48x^2-9\)

\(=9\)

Vì kết quả là hằng số nên biểu thức trên không phụ thuộc vào x

21 tháng 6 2016

b, \(=\frac{x^2+2.5.x+25+x^2-2.x.5+25}{x^2+25}\)

\(=\frac{2x^2+50}{x^2+25}=\frac{2\left(x^2+50\right)}{x^2+50}=2\)

 

 

Dạng 1: Phương trình bậc nhất Bài 1: Giải các phương trình sau : a) 0,5x (2x - 9) = 1,5x (x - 5) b) 28 (x - 1) - 9 (x - 2) = 14x c) 8 (3x - 2) - 14x = 2 (4 - 7x) + 18x d) 2 (x - 5) - 6 (1 - 2x) = 3x + 2 e) \(\frac{x+7}{2}-\frac{x-3}{5}=\frac{x}{6}\) f) \(\frac{2x-3}{3}-\frac{5x+2}{12}=\frac{x-3}{4}+1\) g) \(\frac{x+6}{2}+\frac{2\left(x+17\right)}{2}+\frac{5\left(x-10\right)}{6}=2x+6\) h) \(\frac{3x+2}{5}-\frac{4x-3}{7}=4+\frac{x-2}{35}\) i)...
Đọc tiếp

Dạng 1: Phương trình bậc nhất

Bài 1: Giải các phương trình sau :

a) 0,5x (2x - 9) = 1,5x (x - 5)

b) 28 (x - 1) - 9 (x - 2) = 14x

c) 8 (3x - 2) - 14x = 2 (4 - 7x) + 18x

d) 2 (x - 5) - 6 (1 - 2x) = 3x + 2

e) \(\frac{x+7}{2}-\frac{x-3}{5}=\frac{x}{6}\)

f) \(\frac{2x-3}{3}-\frac{5x+2}{12}=\frac{x-3}{4}+1\)

g) \(\frac{x+6}{2}+\frac{2\left(x+17\right)}{2}+\frac{5\left(x-10\right)}{6}=2x+6\)

h) \(\frac{3x+2}{5}-\frac{4x-3}{7}=4+\frac{x-2}{35}\)

i) \(\frac{x-1}{2}+\frac{x+3}{3}=\frac{5x+3}{6}\)

j) \(\frac{x-3}{5}-1=\frac{4x+1}{4}\)

Dạng 2: Phương trình tích

Bài 2: Giải phương trình sau :

a) (x + 1) (5x + 3) = (3x - 8) (x - 1)

b) (x - 1) (2x - 1) = x(1 - x)

c) (2x - 3) (4 - x) (x - 3) = 0

d) (x + 1)2 - 4x2 = 0

e) (2x + 5)2 = (x + 3)2

f) (2x - 7) (x + 3) = x2 - 9

g) (3x + 4) (x - 4) = (x - 4)2

h) x2 - 6x + 8 = 0

i) x2 + 3x + 2 = 0

j) 2x2 - 5x + 3 = 0

k) x (2x - 7) - 4x + 14 = 9

l) (x - 2)2 - x + 2 = 0

Dạng 3: Phương trình chứa ẩn ở mẫu

Bài 3: Giải phương trình sau :

\(\frac{90}{x}-\frac{36}{x-6}=2\) \(\frac{3}{x+2}-\frac{2}{x-3}=\frac{8}{\left(x-3\right)\left(x+2\right)}\)
\(\frac{1}{x}+\frac{1}{x+10}=\frac{1}{12}\) \(\frac{1}{2x-3}-\frac{3}{x\left(2x-3\right)}=\frac{5}{x}\)
\(\frac{x+3}{x-3}-\frac{1}{x}=\frac{3}{x\left(x-3\right)}\) \(\frac{3}{4\left(x-5\right)}+\frac{15}{50-2x^2}=\frac{-7}{6\left(x+5\right)}\)
\(\frac{3}{x+2}-\frac{2}{x-2}+\frac{8}{x^2-4}=0\) \(\frac{x}{x+1}-\frac{2x-3}{1-x}=\frac{3x^2+5}{x^2-1}\)

0
Bài 1: Rút gọn :A =(x2 - 1)\(\left(\frac{1}{x-1}-\frac{1}{x+1}-1\right)\)                                                  B = \(\left(y-\frac{x^2+y^2}{x+y}\right).\left(\frac{2y}{x}-\frac{4y}{x-y}\right)\)C = \(\left(\frac{x+1}{2x-2}+\frac{3}{x^2-1}-\frac{x+3}{2x+2}\right).\frac{4x^2-4}{5}\)                         D = \(\left(\frac{x^2}{y^2}+\frac{y}{x}\right):\left(\frac{x}{y^2}-\frac{1}{y}+\frac{1}{x}\right)\)Bài 2 :a) Tìm giá trị nhỏ...
Đọc tiếp

Bài 1: Rút gọn :

A =(x- 1)\(\left(\frac{1}{x-1}-\frac{1}{x+1}-1\right)\)                                                  B = \(\left(y-\frac{x^2+y^2}{x+y}\right).\left(\frac{2y}{x}-\frac{4y}{x-y}\right)\)

C = \(\left(\frac{x+1}{2x-2}+\frac{3}{x^2-1}-\frac{x+3}{2x+2}\right).\frac{4x^2-4}{5}\)                         D = \(\left(\frac{x^2}{y^2}+\frac{y}{x}\right):\left(\frac{x}{y^2}-\frac{1}{y}+\frac{1}{x}\right)\)

Bài 2 :

a) Tìm giá trị nhỏ nhất của A = x2 + 4x -7; B = 2x2 - 3x +5; C = x4 - 3x2 + 1

b) Tìm giá trị lớn nhất của A = -x2 + 6x - 7; B = -3x-x + 4; C = -2x4 - 4x2 + 3

Bài 3:

a) Cho a + b = 7; ab = 10. Tính A = a2 + b2; B = a3 + b3

b) Chứng minh -x2 + x - 1 < 0 với mọi số thực x

c) Chứng minh x2 + xy + y2 + 1 > 0 với mọi số thực x và y

---> Mình đang cần gấp, các bạn giúp mình với :( Cám ơn ạ

 

1
22 tháng 6 2018

Đăng từng bài thôi nha bạn 

Bài 1 : Năm nay mới lên lớp 8 -_- 

Bài 2 : 

\(a)\) 

* Câu A : 

\(A=x^2+4x-7\)

\(A=\left(x^2+4x+4\right)-11\)

\(A=\left(x+2\right)^2-11\ge-11\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=-2\) ( ở đây nhiều bài quá nên mình làm tắt cho nhanh, bạn nhớ trình bày rõ ra nhé ) 

Vậy GTNN của \(A\) là \(-11\) khi \(x=-2\)

* Câu B : 

\(B=2x^2-3x+5\)

\(2B=4x^2-6x+10\)

\(2B=\left(4x^2-6x+1\right)+9\)

\(2B=\left(2x-1\right)^2+9\ge9\)

\(B=\frac{\left(2x-1\right)^2+9}{2}\ge\frac{9}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=\frac{1}{2}\)

Vậy GTNN của \(B\) là \(\frac{9}{2}\) khi \(x=\frac{1}{2}\)

* Câu C : 

\(C=x^4-3x^2+1\)

\(C=\left(x^4-3x^2+\frac{9}{4}\right)-\frac{5}{4}\)

\(C=\left(x^2-\frac{3}{2}\right)^2-\frac{5}{4}\ge-\frac{5}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\orbr{\begin{cases}x=\sqrt{\frac{3}{2}}\\x=-\sqrt{\frac{3}{2}}\end{cases}}\)

Vậy GTNN của \(C\) là \(-\frac{5}{4}\) khi \(x=\sqrt{\frac{3}{2}}\) hoặc \(x=-\sqrt{\frac{3}{2}}\)

Chúc bạn học tốt ~