Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
uuuuuuuuuuuuuuuuuuuuuuuuuuuuuu
55555555555555555
666666666666666666666666666
88888888888888888888
\(a,=64x^3-48x^2+12x-1-\left(64x^3+12x-48x^2-9\right)\)
\(=\left(64x^3-64x^3\right)+\left(48x^2-48x^2\right)+\left(12x-12x\right)+\left(9-1\right)\)
\(=8\) => ko phụ thuộc vào biến x
\(b,=2\left(x+y\right)\left(x^2-xy+y^2\right)-3\left(x^2+y^2\right)\)
thay x+y=1 vào
\(=2\left(x^2-xy+y^2\right)-3\left(x^2+y^2\right)\)
\(=2x^2-2xy+2y^2-3x^2-3y^2\)
\(=-\left(x^2+2xy+y^2\right)=-\left(x+y\right)^2=-1\) =>ko phụ thuộc vào biến
\(c,=x^3+3x^2+3x+1-x^3+3x^2-3x+1-6\left(x^2-1\right)\)
\(=6x^2+2-6x^2+6=8\)
\(d,\frac{\left(2x+5\right)^2+\left(5x-2\right)^2}{x^2+1}=\frac{4x^2+20x+25+25x^2-20x+4}{x^2+1}=\frac{29\left(x^2+1\right)}{x^2+1}=29\)
\(x^3-6x^2+5x+12>0\\ < =>\left(x^3-5x-x+5x\right)+12>0\\ < =>\left[\left(x^3-x\right)-\left(5x-5x\right)\right]+12>0\\ < =>x^2+12>0\\ < =>x^2>-12\\ =>x\in R\\ BPTcóvôsốnghiem\)
) \(\dfrac{x^3+8y^3}{2y+x}\)
\(=\dfrac{x^3+\left(2y\right)^3}{x+2y}\)
\(=\dfrac{\left(x+2y\right)\left[x^2+x.2y+\left(2y\right)^2\right]}{x+2y}\)
\(=x^2+2xy+4y^2\)
b) \(\dfrac{a-1}{2\left(a-4\right)}+\dfrac{a}{a-4}\) MTC: \(2\left(a-4\right)\)
\(=\dfrac{a-1}{2\left(a-4\right)}+\dfrac{2a}{2\left(a-4\right)}\)
\(=\dfrac{a-1+2a}{2\left(a-4\right)}\)
\(=\dfrac{3a-1}{2\left(a-4\right)}\)
c) \(\dfrac{x^3+3x^2y+3xy^2+y^3}{2x+2y}\)
\(=\dfrac{\left(x+y\right)^3}{2\left(x+y\right)}\)
\(=\dfrac{\left(x+y\right)^2}{2}\)
d) \(\left(x-5\right)^2+\left(7-x\right)\left(x+2\right)\)
\(=\left(x^2-2.x.5+5^2\right)+\left(7x+14-x^2-2x\right)\)
\(=x^2-10x+25+7x+14-x^2-2x\)
\(=39-5x\)
e) \(\dfrac{3x}{x-2}-\dfrac{2x+1}{2-x}\)
\(=\dfrac{3x}{x-2}+\dfrac{2x+1}{x-2}\)
\(=\dfrac{3x+2x+1}{x-2}\)
\(=\dfrac{5x+1}{x-2}\)
h) \(\dfrac{1}{3x-2}-\dfrac{1}{3x+2}-\dfrac{3x+6}{4-9x^2}\)
\(=\dfrac{1}{3x-2}-\dfrac{1}{3x+2}+\dfrac{3x+6}{9x^2-4}\)
\(=\dfrac{1}{3x-2}-\dfrac{1}{3x+2}+\dfrac{3x+6}{\left(3x-2\right)\left(3x+2\right)}\) MTC: \(\left(3x-2\right)\left(3x+2\right)\)
\(=\dfrac{3x+2}{\left(3x-2\right)\left(3x+2\right)}-\dfrac{3x-2}{\left(3x-2\right)\left(3x+2\right)}+\dfrac{3x+6}{\left(3x-2\right)\left(3x+2\right)}\)
\(=\dfrac{\left(3x+2\right)-\left(3x-2\right)+\left(3x+6\right)}{\left(3x-2\right)\left(3x+2\right)}\)
\(=\dfrac{3x+2-3x+2+3x+6}{\left(3x-2\right)\left(3x+2\right)}\)
\(=\dfrac{3x+10}{\left(3x-2\right)\left(3x+2\right)}\)
a) ( 4x - 1 )3 - ( 4x - 3 )( 16x2 + 3 )
= 64x3 - 48x2 + 12x - 1 - ( 64x3 + 12x - 48x2 - 9 ) ( chỗ này bạn chịu khó nháp nhé )
= 64x3 - 48x2 + 12x - 1 - 64x3 - 12x + 48x2 + 9
= -1 + 9 = 8
Vậy biểu thức không phụ thuộc vào x ( đpcm )
b) ( x + 1 )3 - ( x - 1 )3 - 6( x + 1 )( x - 1 )
= x3 + 3x2 + 3x + 1 - ( x3 - 3x2 + 3x - 1 ) - 6x2 + 6
= x3 + 3x2 + 3x + 1 - x3 + 3x2 - 3x + 1 - 6x2 + 6
= 1 + 1 + 6 = 8
Vậy biểu thức không phụ thuộc vào x ( đpcm )
c) \(\frac{\left(x+5\right)^2+\left(x-5\right)^2}{x^2+25}\)
\(=\frac{x^2+10x+25+x^2-10x+25}{x^2+25}\)
\(=\frac{2x^2+50}{x^2+25}\)
\(=\frac{2\left(x^2+25\right)}{x^2+25}=2\)
Vậy biểu thức không phụ thuộc vào x ( đpcm )
a, \(\left(4x-1\right)^3-\left(4x-3\right)\left(16x^2+3\right)\)
\(=64x^3-32x^2+4x-16x^2+8x-1-64x^3-12x+48x^2+9\)
\(=8\)
Vậy biểu thức thức không phụ thuộc vào biến x
b, \(\left(x+1\right)^3-\left(x-1\right)^3-6\left(x+1\right)\left(x-1\right)\)
\(=x^3+3x^2+3x+1-x^3+3x^2-3x+1-6x^2+6\)
\(=8\)
Vậy biểu thức không phụ thuộc vào biến x
c, \(\frac{\left(x+5\right)^2+\left(x-5\right)^2}{x^2+25}=\frac{x^2+10x+25+x^2-10x+25}{x^2+25}\)
\(=\frac{2x^2+50}{x^2+25}=\frac{2\left(x^2+25\right)}{x^2+25}=2\)
Vậy biểu thức không phụ thuộc vào biến x
\(\left(4x-1\right)^3-\left(4x-3\right)\left(16x^2+3\right)\)
\(=\left(4x\right)^3-3.\left(4x\right)^2.1+3.4x.1^2-1^3-\left(4x-3\right)\left(16x^2+3\right)\)
\(=64x^3-48x^2+12x-1-64x^3-12x-48x^2-9\)
\(=9\)
Vì kết quả là hằng số nên biểu thức trên không phụ thuộc vào x
b, \(=\frac{x^2+2.5.x+25+x^2-2.x.5+25}{x^2+25}\)
\(=\frac{2x^2+50}{x^2+25}=\frac{2\left(x^2+50\right)}{x^2+50}=2\)
Đăng từng bài thôi nha bạn
Bài 1 : Năm nay mới lên lớp 8 -_-
Bài 2 :
\(a)\)
* Câu A :
\(A=x^2+4x-7\)
\(A=\left(x^2+4x+4\right)-11\)
\(A=\left(x+2\right)^2-11\ge-11\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=-2\) ( ở đây nhiều bài quá nên mình làm tắt cho nhanh, bạn nhớ trình bày rõ ra nhé )
Vậy GTNN của \(A\) là \(-11\) khi \(x=-2\)
* Câu B :
\(B=2x^2-3x+5\)
\(2B=4x^2-6x+10\)
\(2B=\left(4x^2-6x+1\right)+9\)
\(2B=\left(2x-1\right)^2+9\ge9\)
\(B=\frac{\left(2x-1\right)^2+9}{2}\ge\frac{9}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=\frac{1}{2}\)
Vậy GTNN của \(B\) là \(\frac{9}{2}\) khi \(x=\frac{1}{2}\)
* Câu C :
\(C=x^4-3x^2+1\)
\(C=\left(x^4-3x^2+\frac{9}{4}\right)-\frac{5}{4}\)
\(C=\left(x^2-\frac{3}{2}\right)^2-\frac{5}{4}\ge-\frac{5}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\orbr{\begin{cases}x=\sqrt{\frac{3}{2}}\\x=-\sqrt{\frac{3}{2}}\end{cases}}\)
Vậy GTNN của \(C\) là \(-\frac{5}{4}\) khi \(x=\sqrt{\frac{3}{2}}\) hoặc \(x=-\sqrt{\frac{3}{2}}\)
Chúc bạn học tốt ~
e)\(\frac{\left(x+5\right)^2+\left(x-5\right)^2}{x^2+25}\)
=\(\frac{x^2+10x+25+x^2-10x+25}{x^2+25}\)
=\(\frac{2x^2+50}{x^2+25}\)
=\(\frac{2\left(x^2+25\right)}{x^2+25}\)
\(=2\)
Đúng như đáp án bạn nha