Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Answer:
Bài 1:
Vì AB = AC nên tam giác ABC cân tại A
=> Góc ABC = góc ACB = (180 độ - góc BAC) : 2 = 30 độ
Ta gọi DF là trung trực của AC
=> DF vuông góc AC = F; FC = FA
Mà DF là trung trực của AC
=> Góc ADA = 2 góc CDF = 2 . (180 độ - góc DCF - góc CFD) = 120 độ
Xét tam giác ACE và tam giác BAD:
BD = AE
AC = AB
Góc EAC = góc DBA = 30 độ
=> Tam giác ACE = tam giác BAD (c.g.c)
=> Góc CED = góc ADB = góc EDC = 180 độ - góc CDA = 60 độ
Bài 2:
Có: IK là trung trực của BC
=> IB = IC
Tương tự ID = IA mà AB = CD
=> Tam giác IAB = tam giác IDC (c.c.c)
=> Góc IAB = góc IDA = góc IAC
=> AI là tia phân giác của góc BAD
Mà AI là tia phân giác của góc A
IE vuông góc AB; IH vuông góc AC
=> IE = IH
\(\Rightarrow BE^2=IB^2-IE^2=IC^2-IH^2=HC^2\)
=> BE = HC
Mà IE = IH; góc IEA = góc IHA = 90 độ; góc EAI = góc IAH
=> Tam giác AEI = tam giác AHI (g.c.g)
=> AE = AH mà IE = IH
=> IA là trung trực của EH
Có: CF song song AB nên góc FHC = góc AHE = góc AEH = góc HFC
=> Tam giác CHF cân ở C
=> CF = CH
=> CF = BE
Mà KB = KC; góc EBK = góc KCF
=> Tam giác BKE = tam giác CKF (c.g.c)
=> Góc BKE = góc FKC
=> E, F, K thẳng hàng
Chứng minh được: \(\Delta AMD=\Delta CMB\left(c-g-c\right)\)
\(\Rightarrow\widehat{DAM}=\widehat{BCM}\)(hai góc tương ứng)
Lại chứng minh được : \(\Delta AEM=\Delta CFM\left(c-g-c\right)\)
\(\Rightarrow ME=MF\)(hai cạnh tương ứng) (1)
Tiếp tục chứng minh được: \(\Delta EDM=\Delta FBM\left(c-g-c\right)\)
\(\Rightarrow\widehat{EMD}=\widehat{FMB}\)(hai góc tương ứng)
\(\Rightarrow\widehat{EMF}=\widehat{EMD}+\widehat{DMF}=\widehat{FMB}+\widehat{DMF}=\widehat{DMB}=60^0\)(2)
Từ (1) và (2) suy ra tam giác MEF là tam giác đều (đpcm)
A B C D E F
Đề sai rồi nhé \(E\varepsilon AB\)! mới đúng
Xét ΔBDE và ΔAFD có
BE=AD
góc EBD=góc DAF
AF=BD
=>ΔBDE=ΔAFD
=>DE=FD
Xét ΔBDE và ΔCEF có
BE=CF
góc DBE=góc ECF
BD=CE
=>ΔBDE=ΔCEF
=>DE=EF=FD
=>ΔDEF đều
\(\Delta\)ABC là \(\Delta\)đều => AB=BC=CA mà D,E,F là trung điểm của AB,BC,CA=>AD=DB=BF=CF=CE=EA
xét \(\Delta\)ADE và \(\Delta\)BFD có:
AD=BF(cmt)
góc A=góc B(\(\Delta\)ABC là \(\Delta\)đều)
AE=BD(cmt)
=> \(\Delta\)ADE = \(\Delta\)BFD(c.g.c)(1)
xét \(\Delta\)BFD và\(\Delta\)CEF có:
BD=CE(cmt)
góc B=góc C(\(\Delta\)ABC là \(\Delta\)đều)
BF=CF(cmt)
=> \(\Delta\)ADE = \(\Delta\)BFD(c.g.c)(2)
từ(1) và(2)=> \(\Delta\)ADE = \(\Delta\)BFD= \(\Delta\)BFD=>DE=DF=FE=>\(\Delta\)DEF là \(\Delta\)đều
Xét ΔABC có
D là trung điểm của AB(gt)
F là trung điểm của BC(gt)
Do đó: DF là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)
Suy ra: DF//AC và \(DF=\dfrac{AC}{2}\)(Định lí 2 về đường trung bình của tam giác)(1)
Xét ΔABC có
F là trung điểm của BC(gt)
E là trung điểm của AC(gt)
Do đó: FE là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)Suy ra: FE//AB và \(FE=\dfrac{AB}{2}\)(Định lí 2 về đường trung bình của tam giác)(2)
Xét ΔABC có
D là trung điểm của AB(gt)
E là trung điểm của AC(gt)
Do đó: DE là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)
Suy ra: DE//BC và \(DE=\dfrac{BC}{2}\)(Định lí 2 về đường trung bình của tam giác)(3)
Ta có: ΔABC đều(gt)
nên AB=AC=BC(4)
Từ (1), (2), (3) và (4) suy ra DE=EF=DF
Xét ΔDEF có DE=DF=EF(cmt)
nên ΔDEF đều(Định nghĩa tam giác đều)