Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D M
a) Xét ΔAMB và ΔDMC có:
MA=MD(gt)
\(\widehat{AMB}=\widehat{DMC}\left(đđ\right)\)
MB=MC(gt)
=> ΔAMB=ΔDMC(c.g.c)
b)Vì: ΔAMB=ΔDMC(cmt)
=> AB=DC ; \(\widehat{ABC}=\widehat{DCB}\)
Xét ΔABC và ΔDCB có:
BC: cạnh chung
\(\widehat{ABC}=\widehat{DCB}\left(cmt\right)\)
AB=DC(cmt)
=> ΔABC=ΔDCB(c.g.c)
=>AC=BD
\(\widehat{ACB}=\widehat{DBC}\) . Mà hai góc này ở vị trí sole trong
=>AC//BD
Vì: ΔABC=ΔDCB(cmt)
=> \(\widehat{BAC}=\widehat{CDB}=90^o\)
a) Xét tam giác ABM và tam giác DCM có
+ BM=CM ( gt)
+ Góc AMB = góc DMC ( đối đỉnh)
+ AM = DM
=> tam giác ABM = tam giác DCM ( c-g-c)
b) Vì tam giác ABM = tam giác DCM
=> góc BAM = Góc CDM ( 2 góc tương ứng )
Ta có : Góc BAM = Góc CDM ( c/m trên)
Mà góc BAM + CAM = 180độ( 2 góc kề bù ) (1)
góc CDM + BDM = 180độ ( 2 góc kề bù ) (2)
Mà góc BAM = góc CDM
Từ (1) và (2) => Góc CAM = góc BDM
Xét tam giác ACM và tam giác BDM có
+ Góc CAM = BDM ( c/m trên)
+ BM = CM ( gt)
+ góc BMD = góc AMC ( đối đỉnh )
=> Tam giác ACM = tam giác BDM ( g.c.g)
=> AC = BD ( 2 cạnh tương ứng)
c) bạn tự làm ạ . Mình bận
A B C D M
a) +) Xét \(\Delta\)ABM và \(\Delta\)DCM có
BM = CM ( gt)
\(\widehat{AMB}=\widehat{CMD}\) ( 2 góc đối đỉnh )
AM = DM ( gt)
=> \(\Delta\)ABM = \(\Delta\)DCM ( c-g-c)
b) +) Xét \(\Delta\)AMC và \(\Delta\)DMB có
AM = DM ( gt)
\(\widehat{AMC}=\widehat{BMD}\) ( 2 góc đối đỉnh )
MC = MB ( gt)
=> \(\Delta\)AMC = \(\Delta\)DMB ( c-g-c)
=> AC = DB ( 2 cạnh tương ứng )
và \(\widehat{ACM}=\widehat{DBM}\) ( 2 góc tương ứng )
Mà 2 góc này ở vị trí so le trong
=> AC // BD
c) +) Theo câu a ta có \(\Delta\)ABM = \(\Delta\)DCM
=> \(\widehat{ABM}=\widehat{DCM}\) ( 2 góc tương ứng )
+) Xét \(\Delta\)ABC và \(\Delta\)DCB có
\(\widehat{ABM}=\widehat{DCM}\) ( cmt)
BC : cạnh chung
\(\widehat{ACM}=\widehat{DBM}\) ( cmt)
=> \(\Delta\)ABC = \(\Delta\)DCB (g-c-g)
=> \(\widehat{BAC}=\widehat{CDB}\) ( 2 góc tương ứng )
Mà \(\widehat{BAC}=90^o\) ( gt)
=> \(\widehat{CDB}=90^o\)
Học tốt
Takigawa Maraii
A B C M D
a) Tam giác AMB = tam giác CMD theo trường hợp C.G.C
b) Tứ giác ABDC là hình bình hành vì có hai đường chéo AD và BC cắt nhau ở trung điểm mỗi đường.
Suy ra AC song song và bằng BD
c) Do ABDC là hình bình hành và góc A bằng 1 vuông nên ABDC là hình chữ nhật => Tam giác ABC = tam giác DCB
=> Góc BDC = 1 vuông
b: Xét tứ giác ABDC có
M là trung điểm của AD
M là trung điểm của BC
Do đó: ABDC là hình bình hành
Suy ra: AC=BD
a) Xét tam giác AMB và tam giác CMD
có: - MD=MA(gt)
-góc DMC=góc BMA ( hai góc đối đỉnh)
- MB=MC(gt)
=> tam giác AMB= tam giác DMC(c.g.c)
xét tam giác AMB và tam giác CMD có
BM=MC (gt)
góc AMB =CMD( đối đỉnh)
AM=MD(gt)
=> tam giác AMB= CMD( C.g.c)
b, tứ giác ABDC có MB=MC=MA=MD => ABDC là hình bình hành
=> AC=BD và AC//BD
c, tứ giác ABDC là hình bình hành
=> góc A =góc C =90 độ
Bài 3:
a: Xét ΔAMB và ΔDMC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)
MB=MC
Do đó: ΔAMB=ΔDMC
b: Xét tứ giác ABDC có
M là trung điểm của BC
M là trung điểm của AD
Do đó: ABDC là hình bình hành
Suy ra:AC//BD và AC=BD
c: Xét ΔABC và ΔDCB có
AB=DC
\(\widehat{ABC}=\widehat{DCB}\)
BC chung
Do đó: ΔABC=ΔDCB
Suy ra: \(\widehat{BAC}=\widehat{CDB}=90^0\)
Cháu trai của tôi thường xuyên kể rằng có một người phụ nữ mặc váy đỏ xuất hiện trong phòng ngủ của nó vào ban đêm. Tên của cô gái đó là Frannie và cô ấy luôn hát ru cho những đứa bé… Những câu chuyện ma mị, hãi hùng này đã từng được lan truyền rất nhiều nơi, phổ biến đến nỗi nền văn hóa nào cũng xuất hiện người phụ nữ này, thậm trí khu vực miền Trung và Tây Nguyên Việt Nam, ai cũng biết đến.
a: Xét ΔMAB và ΔMDC có
MA=MD
góc AMB=góc DMC
MB=MC
Do đo ΔMAB=ΔMDC
b: Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
nên ABDC là hình bình hành
=>AC//BD
c: Xét ΔAHB vuông tại H và ΔDKC vuông tại K có
AB=DC
góc ABH=góc DCK
Do đo: ΔAHB=ΔDKC
=>AH=DK và BK=CH