Bài 4: Cho hình vuông ABCD. Gọi E l...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 11 2021

A B C D E H M N

a/

Xét tg vuông BAC có 

BA=BC => tg BAC cân tại B => \(\widehat{BAC}=\widehat{BCA}=45^o\)

Xét tg vuông BEC có 

BE=BA=BC => tg BEC cân tại B => \(\widehat{BEC}=\widehat{BCE}=45^o\)

\(\Rightarrow\widehat{ABC}=\widehat{BEC}=45^o\)

Xét tg vuông BAC và tg vuông BEC có

BC chung; BA=BE => \(\Delta BAC=\Delta BEC\) (Hai tg vuông có 2 cạnh góc vuông bằng nhau) 

\(\Rightarrow CA=CE\Rightarrow\Delta ACE\) cân tại C (1)

Xét \(\Delta ACE\)

\(\widehat{ACE}=180^o-\left(\widehat{BAC}+\widehat{BEC}\right)=180^o-\left(45^o+45^o\right)=90^o\) (2)

Từ (1) và (2) => TG ACE vuông cân tại C

b/

Xét tg vuông AHE có

MA=MH; NE=NH => MN là đường trung bình của tg AHE

=> MN//AB; \(MN=\frac{AE}{2}=AD=BC\)  => MN//BC; \(MN=BC\)

=> BMNC là hình bình hành (Tứ giác có cặp cạnh đối // và bằng nhau là hbh)

c/

Ta có

\(AH\perp BN\) (1)

MN//BC; \(BC\perp AB\Rightarrow MN\perp AB\)  (2)

Từ (1) và (2) => M là giao của các đường cao trong \(\Delta ANB\) => M là trực tâm của \(\Delta ANB\)

d/

Ta có M là trực tâm \(\Delta ANB\Rightarrow BM\perp AN\)

Mà BM//CN (cạnh đối hbh)

\(\Rightarrow CN\perp AN\Rightarrow\widehat{ANC}=90^o\)

22 tháng 11 2021

a) Xét \(\Delta\)ABC có: BF là trung tuyến;CF là trung tuyến

=> F trung điểm AB;E trung điểm AC

Do đó => EF là đường trung bình của \(\Delta\)ABC

=> EF=1/2BC;EF//BC (1)

Lại có: M trung điểm BG;N trung điểm CG (gt)

=> MN là đường trung bình của \(\Delta\)GBC

=> MN=1/2BC;MN//BC (2)

Từ (1) và (2) => FE=MN;FE//MN

=>MNEF là hbh ( 2 cạnh đối // và = nhau)

b) Ta có MNEF là hbh 

 Để MNEF là hcn thì ME_|_ EF

Mặt khác: ME_|_ EF

                EF//BC ( EF đường tb)=>FG//BC

               (ME là đường tb vì M trung điểm BG;BE trung tuyến)=>ME//AF=>MG//AG

Nên: AF_|_BC

=> ^B=^C=90 độ

=> ABC cân thì MNEF là hcn 

Để MNEF là hình thoi thì EF=FM

Vì EF là đường tb của t/gABC => EF=1/2BC

    MF là đường tb của t/gBFE=>MF=1/2FE 

=> G là trọng tâm của t/gABC

=> AG=2/3BC

Nếu có điểm = AG thì đánh ở giữa BC ( o chắc )

=> MNEF là hcn thì AG=2/3BC

    

22 tháng 11 2021

làm lại câu b 

undefined

28 tháng 11 2021

a) Vì DE_|_ AB (gt) => ^DEA=90o

         DF_|_ AC (gt)=>^DFA=90o

         t/gABC vuông tại A (gt) => ^EAF=90o

=> tứ giác AFDE là hcn (đpcm) ( tứ giác có 3 góc _|_)

b) Vì E đối xứng với G qua D

 => ED=GD => D là trung điểm EG

         H đối xứng với F qua D

=> HD=DF => D là trung điểm HF

Do đó: EFGH là hbh ( 2 đường chéo cắt nhau tại trung điểm mỗi đường) (1)

Lại có DE_|_AB (gt) mà E đối xứng với G qua D

=>EG_|_ AB

nên: GD_|_HF=> GE_|_ HF (*)

Mặt khác: DF_|_AC (gt) mà H đối xứng với F qua D

=> HF_|_AC

nên: HD_|_EG=> HF_|_EG (**)

Từ (***) => 2 đường chéo GE và HF _|_ với nhau (2)

Từ (1) và (2) => EFGH là hình thoi (hbh có 2 đường chéo _|_ với nhau)

c) Vì: EFGH là hình thoi

=> EH//FG

=> AD//FG (3)

Mà BH và CG cắt nhau tại I ( I trên HG)

=>AI//GF (4)

Từ (3) và (4) => A;D;I thẳng hàng ( tiền đề ơ-clit) ...câu này o bt đúng hay o còn tùy cái hình nx :D

ABCFEDG----H------I

1) cho hình thoi ABCD cạnh a. Một đường thẳng đi qua C cắt các tia đôi của các tia BA và DA tHeo thứ tự ở I và Qchứng minh \(\frac{1}{AI}\)+\(\frac{1}{AQ}\)= \(\frac{1}{a}\)2) cho tam giác ABC vuông tại A, ở ngoài tam giác ABC vẽ các tam giác ABH vuông cân tại B, tam giác ACK vuông cân tại C. D là giao điểm của AB và HC, E là giao điểm của AC và BK. chứng minh AD = AE3) cho tam giác ABC vuông...
Đọc tiếp

1) cho hình thoi ABCD cạnh a. Một đường thẳng đi qua C cắt các tia đôi của các tia BA và DA tHeo thứ tự ở I và Q

chứng minh \(\frac{1}{AI}\)+\(\frac{1}{AQ}\)\(\frac{1}{a}\)

2) cho tam giác ABC vuông tại A, ở ngoài tam giác ABC vẽ các tam giác ABH vuông cân tại B, tam giác ACK vuông cân tại C. D là giao điểm của AB và HC, E là giao điểm của AC và BK. chứng minh AD = AE

3) cho tam giác ABC vuông tại A, đường cao AH, phân giác góc ABC cắt đường cao AH tại E cắt AC tại D.

chứng minh rằng \(\frac{AE}{EH}=\frac{DC}{DA}\)

4) cho tam giác ABC, M là điểm thuộc cạnh BC. Chứng minh: AM.BC<AM.MC+AC.MB

5) cho tam giác ABC vuông tại A ( góc B lớn hơn góc C). lấy điểm D trên cạnh AC sao cho góc ABD bằng góc C.

chứng minh \(\frac{1}{BD^2}+\frac{1}{BC^2}=\frac{1}{AB^2}\)

giúp mình với :3. mình sắp thi rồi

p/s không biết làm bài nào chứ không phải lười đâu :((

0
8 tháng 12 2016

HEA = EAF = AFH = 900

=> AEHF là hình chữ nhật

=> AF = EH

mà AF = FK (gt)

=> EH = FK

mà EH // FK (AEHF là hình chữ nhật)

=> EHKF là hình bình hành

O là trung điểm của AH (AEHF là hình chữ nhật)

I là trung điểm của FH (EHKF là hình bình hành)

=> OI là đường trung bình của tam giác HAF

=> OI // AC