\(x^3+6x^2+11x+6\)

b)\(x^3+6x^2-13x-42\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
15 tháng 7 2018

a)

\(x^3+6x^2+11x+6=(x^3-x)+(6x^2+12x+6)\)

\(=x(x^2-1)+5(x^2+2x+1)\)

\(=x(x-1)(x+1)+6(x+1)^2\)

\(=(x+1)[x(x-1)+6(x+1)]=(x+1)(x^2+5x+6)\)

\(=(x+1)(x^2+2x+3x+6)\)

\(=(x+1)[x(x+2)+3(x+2)]=(x+1)(x+2)(x+3)\)

b) \(x^3+6x^2-13x-42\)

\(=x^3+2x^2+4x^2+8x-21x-42\)

\(=x^2(x+2)+4x(x+2)-21(x+2)\)

\(=(x+2)(x^2+4x-21)\)

\(=(x+2)[x^2-3x+7x-21)\)

\(=(x+2)(x+7)(x-3)\)

AH
Akai Haruma
Giáo viên
15 tháng 7 2018

c)

\(x^3-5x^2+8x-4=(x^3-x^2)-4x^2+8x-4\)

\(=x^2(x-1)-4(x^2-2x+1)\)

\(=x^2(x-1)-4(x-1)^2\)

\(=(x-1)[x^2-4(x-1)]=(x-1)(x^2-4x+4)\)

\(=(x-1)(x-2)^2\)

d) \(2x^3-x^2+3x+6\)

\(=2x^3+2x^2-3x^2+3x+6\)

\(=2x^2(x+1)-3(x^2-x-2)\)

\(=2x^2(x+1)-3[x^2+x-2x-2]\)

\(=2x^2(x+1)-3[x(x+1)-2(x+1)]\)

\(=2x^2(x+1)-3(x+1)(x-2)\)

\(=(x+1)(2x^2-3x+6)\)

3 tháng 8 2017

a)\(\left(x+1\right)\left(x+2\right)\left(x+3\right)\)

b)\(\left(x-3\right)\left(x-7\right)\left(x+2\right)\)

c)\(\left(x-3\right)\left(x+3\right)\left(x+2\right)\left(x+1\right)\)

d)\(\left(x+5\right)\left(x-3\right)\left(x+1\right)\left(x+2\right)\)

11 tháng 10 2017

sao bn toàn trả lời tắt thế

9 tháng 6 2019

Bài 1 :

\(a,\)\(x^3+6x^2+11x+6\)

\(=x^2\left(x+1\right)+5x\left(x+1\right)+6\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2+5x+6\right)\)

\(=\left(x+1\right)\left(x+2\right)\left(x+3\right)\)

9 tháng 6 2019

\(a,x^3+6x^2+11x+6\)

\(=x^3+x^2+5x^2+5x+6x+6\)

\(=x^2\left(x+1\right)+5x\left(x+1\right)+6\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2+5x+6\right)\)

20 tháng 10 2018

help me!!!

26 tháng 10 2022

b: \(=x^4+x^2+36-2x^3+12x^2-12x+x^2-6x+9\)

\(=x^4-2x^3+14x^2-18x+45\)

\(=x^4+9x^2-2x^3-18x+5x^2+45\)

\(=\left(x^2+9\right)\left(x^2-2x+5\right)\)

d: \(=2x^4+2x^3+6x^2-x^3-x^2-3x+x^2+x+3\)

\(=\left(x^2+x+3\right)\left(2x^2-x+1\right)\)

e: \(=3x^4-3x^3-3x^2-2x^3+2x^2+2x+2x^2-2x-2\)

\(=\left(x^2-x-1\right)\left(3x^2-2x+1\right)\)

AH
Akai Haruma
Giáo viên
15 tháng 7 2018

a)

\(x^3-7x-6=x^3-x-6x-6\)

\(=x(x^2-1)-6(x+1)\)

\(=x(x-1)(x+1)-6(x+1)=(x+1)[x(x-1)-6]\)

\(=(x+1)(x^2-x-6)=(x+1)[x^2-3x+2x-6]\)

\(=(x+1)[x(x-3)+2(x-3)]=(x+1)(x+2)(x-3)\)

b) \(x^3-6x^2+8x\)

\(=x(x^2-6x+8)\)

\(=x(x^2-4x-2x+8)\)

\(=x[x(x-4)-2(x-4)]=x(x-2)(x-4)\)

AH
Akai Haruma
Giáo viên
15 tháng 7 2018

c) \(x^4+2x^3-16x^2-2x+15\)

\(=(x^4+2x^3-x^2-2x)-15x^2+15\)

\(=[(x^4-x^2)+(2x^3-2x)]-15(x^2-1)\)

\(=[x^2(x^2-1)+2x(x^2-1)]-15(x^2-1)\)

\(=(x^2-1)(x^2+2x)-15(x^2-1)=(x^2-1)(x^2+2x-15)\)

\(=(x^2-1)(x^2-3x+5x-15)=(x^2-1)[x(x-3)+5(x-3)]\)

\(=(x^2-1)(x+5)(x-3)=(x-1)(x+1)(x+5)(x-3)\)

d)

\(x^3-11x^2+30x=x(x^2-11x+30)\)

\(=x(x^2-5x-6x+30)\)

\(=x[x(x-5)-6(x-5)]=x(x-6)(x-5)\)

10 tháng 12 2018

1.

a) \(x\left(x+4\right)+x+4=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-4\\x=-1\end{matrix}\right.\)

b) \(x\left(x-3\right)+2x-6=0\)

\(\Leftrightarrow\left(x+2\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-2\\x=3\end{matrix}\right.\)

10 tháng 12 2018

Bài 1:

a, \(x\left(x+4\right)+x+4=0\)

\(\Leftrightarrow x\left(x+4\right)+\left(x+4\right)=0\)

\(\Leftrightarrow\left(x+4\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=-1\end{matrix}\right.\)

Vậy \(x=-4\) hoặc \(x=-1\)

b, \(x\left(x-3\right)+2x-6=0\)

\(\Leftrightarrow x\left(x-3\right)+2\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)

Vậy \(x=3\) hoặc \(x=-2\)

5 tháng 12 2018

1/ \(\frac{x-3}{3xy}\)+\(\frac{5x+3}{3xy}\)\(\frac{6x}{3xy}\)=\(\frac{3}{y}\)

2/\(\frac{5x-7}{2x-3}\)+\(\frac{4-3x}{2x-3}\)=\(\frac{2x-3}{2x-3}\)=1

3/\(\frac{11x-7}{3-5x}\)-\(\frac{6x+4}{5x-3}\)=\(\frac{11x-7}{3-5x}\)+\(\frac{6x+4}{3-5x}\)=\(\frac{17x-3}{3-5x}\)

4/\(\frac{3}{2x+6}\)-\(\frac{x-6}{2x^2+6x}\)=\(\frac{3x}{x\left(2x+6\right)}\)-\(\frac{x-6}{x\left(2x+6\right)}\)=\(\frac{2x-6}{x\left(2x+6\right)}\)

5/\(\frac{1}{2x-10}\)+\(\frac{2x}{3x^2-15x}\)=\(\frac{1}{2\left(x-5\right)}\)+\(\frac{2x}{3x\left(x-5\right)}\)=\(\frac{3x}{6x \left(x-5\right)}\)+\(\frac{4x}{6x\left(x-5\right)}\)

=\(\frac{7x}{6x\left(x-5\right)}\)=\(\frac{7}{6\left(x-5\right)}\)

27 tháng 8 2017

\(a,\)\(x^4-4x^3+4x^2=0\)

\(\Leftrightarrow x^2.\left(x^2-4x+4\right)=0\)

\(\Leftrightarrow x^2.\left(x^2-2.x.2+2^2\right)=0\)

\(\Leftrightarrow x^2.\left(x-2\right)^2=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2=0\\\left(x-2\right)^2=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-2=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)

\(b,\)\(x^2+5x+4=0\)

\(\Leftrightarrow x^2+x+4x+4=0\)

\(\Leftrightarrow x.\left(x+1\right)+4.\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right).\left(x+4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x+4=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-4\end{cases}}\)

\(c,\)\(9x-6x^2-3=0\)

\(\Leftrightarrow-3.\left(2x^2-3x+1\right)=0\)

\(\Leftrightarrow2x^2-3x+1=0\)

\(\Leftrightarrow2x^2-2x-x+1=0\)

\(\Leftrightarrow2x.\left(x-1\right)-\left(x-1\right)\)

\(\Leftrightarrow\left(x-1\right).\left(2x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\2x-1=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=1\\2x=1\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{1}{2}\end{cases}}\)

\(d,\)\(2x^2+5x+2=0\)

\(\Leftrightarrow2x^2+4x+x+2=0\)

\(\Leftrightarrow2x.\left(x+2\right)+\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right).\left(2x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\2x+1=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=-2\\2x=-1\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-\frac{1}{2}\end{cases}}\)

1) \(\frac{3x-1}{4}+\frac{2x-3}{3}=\frac{x-1}{2}\) Mc : 12 \(\Leftrightarrow\) \(\frac{3.\left(3x-1\right)}{12}+\frac{4.\left(2x-3\right)}{12}=\frac{6.\left(x-1\right)}{12}\) \(\Leftrightarrow\) 9x - 3 + 8x - 12 = 6x - 6 \(\Leftrightarrow\) 9x + 8x - 6x = 3 + 12 - 6 \(\Leftrightarrow\) 11x = 9 \(\Leftrightarrow\) x = 0,8 Vậy S = {0,8} 2) \(\frac{x+1}{2}-\frac{x+3}{12}=3-\frac{5-3x}{3}\) Mc : 12 \(\Leftrightarrow\)...
Đọc tiếp

1) \(\frac{3x-1}{4}+\frac{2x-3}{3}=\frac{x-1}{2}\) Mc : 12

\(\Leftrightarrow\) \(\frac{3.\left(3x-1\right)}{12}+\frac{4.\left(2x-3\right)}{12}=\frac{6.\left(x-1\right)}{12}\)

\(\Leftrightarrow\) 9x - 3 + 8x - 12 = 6x - 6

\(\Leftrightarrow\) 9x + 8x - 6x = 3 + 12 - 6

\(\Leftrightarrow\) 11x = 9

\(\Leftrightarrow\) x = 0,8

Vậy S = {0,8}

2) \(\frac{x+1}{2}-\frac{x+3}{12}=3-\frac{5-3x}{3}\) Mc : 12

\(\Leftrightarrow\) \(\frac{6.\left(x+1\right)}{12}-\frac{x+3}{12}=\frac{12.3}{12}-\frac{4.\left(5-3x\right)}{12}\)

\(\Leftrightarrow\) 6x + 6 - x + 3 = 36 - 20 - 12x

\(\Leftrightarrow\) 6x - x + 12x = -6 - 3 + 36 - 20

\(\Leftrightarrow\) 17x = 7

\(\Leftrightarrow\) x = \(\frac{7}{17}\)

Vậy S = {\(\frac{7}{17}\)}

3) x - \(\frac{x+1}{3}\) = \(\frac{2x-1}{5}\) Mc : 15

\(\Leftrightarrow\) \(\frac{15.x}{15}-\frac{5.\left(x+1\right)}{15}=\frac{3.\left(2x-1\right)}{15}\)

\(\Leftrightarrow\) 15x - 5x - 5 = 6x - 3

\(\Leftrightarrow\) 15x - 5x - 6x = 5 - 3

\(\Leftrightarrow\) 4x = 2

\(\Leftrightarrow\) x = \(\frac{2}{4}=\frac{1}{2}\)

Vậy S = {\(\frac{1}{2}\)}

4) \(\frac{2x+7}{3}-\frac{x-2}{4}=-2\) Mc : 12

\(\Leftrightarrow\) \(\frac{4.\left(2x+7\right)}{12}-\frac{3.\left(x-2\right)}{12}=\frac{12.\left(-2\right)}{12}\)

\(\Leftrightarrow\) 8x + 28 -3x + 6 = -24

\(\Leftrightarrow\) 8x - 3x = -28 - 6 -24

\(\Leftrightarrow\) 5x = -58

\(\Leftrightarrow\) x = -11,6

Vậy S = {-11,6}

5) \(\frac{2x-3}{4}-\frac{4x-5}{3}=\frac{5-x}{6}\) Mc : 12

\(\Leftrightarrow\) \(\frac{3.\left(2x-3\right)}{12}-\frac{4.\left(4x-5\right)}{12}=\frac{2.\left(5-x\right)}{12}\)

\(\Leftrightarrow\) 6x - 9 - 16x + 20 = 10 - 2x

\(\Leftrightarrow\) 6x - 16x + 2x = 9 - 20 + 10

\(\Leftrightarrow\) -8x = -1

\(\Leftrightarrow\) x = \(\frac{1}{8}\)

Vậy S = {\(\frac{1}{8}\)}

6) \(\frac{12x+1}{4}=\frac{9x+1}{3}-\frac{3-5x}{12}\) Mc : 12

\(\Leftrightarrow\frac{3.\left(12x+1\right)}{12}=\frac{4.\left(9x+1\right)}{12}-\frac{3-5x}{12}\)

\(\Leftrightarrow\) 36x + 3 = 36x + 4 - 3 + 5x

\(\Leftrightarrow\) 36x - 36x - 5x = -3 + 4 - 3

\(\Leftrightarrow\) -5x = -2

\(\Leftrightarrow x=\frac{2}{5}\)

7) \(\frac{x+6}{4}\) - \(\frac{x-2}{6}-\frac{x+1}{3}=0\) Mc : 12

\(\Leftrightarrow\) \(\frac{3.\left(x+6\right)}{12}-\frac{2.\left(x-2\right)}{12}-\frac{4.\left(x+1\right)}{12}=0\)

\(\Leftrightarrow\) 3x + 18 - 2x + 4 - 4x - 4 = 0

\(\Leftrightarrow\) 3x - 2x - 4x = -18 - 4 + 4

\(\Leftrightarrow\) -3x = -18

\(\Leftrightarrow\) x = 6

Vậy S = {6}

8) x\(^2\) - x - 6 = 0

\(\Leftrightarrow\) x\(^2\) + 2x - 3x - 6 = 0

\(\Leftrightarrow\) x.(x + 2) - 3.(x + 2) = 0

\(\Leftrightarrow\) (x - 3).(x + 2) = 0

\(\Leftrightarrow\) x - 3 = 0 hoặc x + 2 = 0

\(\Leftrightarrow\) x = 3 hoặc x = -2

Vậy S = {3; -2}

0
27 tháng 12 2017

a, \(x^4-6x^3+11x^2-6x+1=0\)

=> \(x^4-6x^3+9x^2+2x^2-6x+1=0\)

=> \(x^2+3x+1=0\)

=> \(\Delta\) =\(b^2-4c\)

=\(3^2.4=5\)

Nên \(\sqrt{\Delta}=5\)

x= \(\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{-3+\sqrt{5}}{2}\)

hoặc x= \(\dfrac{b+\sqrt{\Delta}}{2a}=\dfrac{3+\sqrt{5}}{2}\)

27 tháng 12 2017

Đáp án câu a.

https://giaibaitapvenha.blogspot.com/2017/12/toan-lop-8-ai-so_27.html