Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi số máy san đất của ba đội lần lượt là a ; b ; c \(\left(a;b;c\ne0\right)\)
Vì đội thứ nhất nhiều hơn đội thứ hai 2 máy \(\Rightarrow a-b=2\)
Vì đội thứ nhất hoàn thành công việc trong 3 ngày, đội thứ hai trong 4 ngày, đội thứ 3 trong 6 ngày \(\Rightarrow3a=4b=6c\).
Trên cùng một khối lượng công việc như nhau, số máy san đất và thời gian là 2 đại lượng tỉ lệ nghịch :
\(\Rightarrow\frac{a}{\frac{1}{3}}=\frac{b}{\frac{1}{4}}=\frac{c}{\frac{1}{6}}\) . Áp dụng tính chất dãy tỉ số bằng nhau, ta có :
\(\frac{a}{\frac{1}{3}}=\frac{b}{\frac{1}{4}}=\frac{c}{\frac{1}{6}}=\frac{a-b}{\frac{1}{3}-\frac{1}{4}}=\frac{2}{\frac{1}{12}}=2\div\frac{1}{12}=2\times\frac{12}{1}=24\)
\(\Rightarrow a=24\div3=8\) \(b=24\div4=6\) \(c=24\div6=4\)
Vậy đội thứ nhất có 8 máy, đội thứ hai có 6 máy, đội thứ ba có 4 máy.
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi số máy cày của 3 đội lần lượt là x,y,z (x,y,z khác 0;x,y,z thuộc N*)
Vì tổng số máy của đội 2 và đội 3 là 14 máy nên : y+z=14
Vì số máy và số ngày là 2 đại lượng tỉ lệ nghịch nên ta có:2x=3y=4z
=> x/1/2=y/1/3=z/1/4
ADTC dãy tỉ số = nhau ta có:
y/1/3=y+z/1/3+1/4=14/7/12=24
=> x/1/2=24=>x=12 (máy)
y/1/3=24.1/3=8 (máy)
z/1/4=24.1/4=6 (máy)
Vậy...
![](https://rs.olm.vn/images/avt/0.png?1311)
gọi số máy cày của 3 đội lần lượt là x,y,z (máy) (x,y,z thuộc N)
Vì tổng số máy cày của 3 đội là 87 nên ta có: x+y+z=87 (máy)
Vì mỗi máy cày đều có năng suất như nhau nên ta có: 3x=5y=9z
=> x/5=y/3;y=9=z/5 (máy)
=>x/15=y=9=z/5 (máy)
ADTC dãy tỉ số = nhau ta có:
x/15=y/9=z/5=x+y+z/15+9+5=87/29=3
\(\Rightarrow\hept{\begin{cases}\frac{x}{15}=3\\\frac{y}{9}=3\\\frac{z}{5}=3\end{cases}}\Leftrightarrow\hept{\begin{cases}x=45\\y=27\\z=15\end{cases}}\left(tm\right)\)
Vậy...
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi số máy của cả đội thứ nhất; đội thứ hai; đội thứ ba lần lượt là x(máy); y(máy); z(máy) (x; y; z là số tự nhiên khác 0)
Ta có số máy và số ngày làm việc tỉ lệ nghịch với số máy (vì năng suất của mỗi máy là như nhau
nên 2x = 3y = 4z hay \(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{4}}\)
mà y - z = 3 (đội thứ hai nhiều hơn đội thứ ba 3 máy)
Theo tính chất dãy tỉ số bằng nhau ta có
\(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{4}}=\frac{y-z}{\frac{1}{3}-\frac{1}{4}}=\frac{3}{\frac{1}{12}}=36\)
do đó x = 1/2 . 36 = 18
y = 1/3 . 36 = 12
z = 1/4 . 36 = 9
Vậy số máy của cả ba đội lần lượt là: 18(máy); 12(máy); 9(máy)
Số máy | a | b | c |
Số ngày | 2 | 3 | 4 |
Gọi 3 đội máy san đất lần lượt là a,b,c ( a, b, c >0)
Vì số máy và số ngày là 2 đại lượng tỉ lệ nghịch nên
Ta có :2.a=3.b=4.c\(\Rightarrow\frac{2a}{12}=\frac{3b}{12}=\frac{4c}{12}\)\(\)
\(\)Hay:\(\frac{a}{6}=\frac{b}{4}=\frac{c}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{a}{6}=\frac{b}{4}=\frac{c}{3}=\frac{b-c}{4-3}=\frac{3}{1}=3\)
\(\frac{a}{6}=1\Rightarrow a=6\)
\(\frac{b}{4}=1\Rightarrow b=4\)
\(\frac{c}{3}=1\Rightarrow c=3\)
Vậy đội 1, 2, 3 có số máy lần lượt là :6 máy, 4 máy, 3 máy
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi số máy của 3 đội là 1 , 2, 3, là a , b ,c ( máy )
=> a - b = 2
Do các máy có cùng năng suất và khối lượng công việc mỗi đội như nhau nên : 3a = 4b = 6c
=> 3a/24 = 4b/24 = 6c/24 => a/8 = b/6 = c/4
Áp dụng tính chất dãy tỉ số bằng nhau ta có : a/8 = b/6 = c/4 = a - b/8 - 6 = 2/2 = 1
a/8 = 1 => a = 8
b/6 = 1 => b = 6
c/6 = 1 =>
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi số máy của mỗi đội lần lượt là \(x,y,z\)(máy) \(x,y,z\inℕ^∗\)
Ta có: \(4x=6y=8z\Leftrightarrow\frac{x}{6}=\frac{y}{4}=\frac{z}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{6}=\frac{y}{4}=\frac{z}{3}=\frac{x-y}{6-4}=\frac{2}{2}=1\)
\(\Leftrightarrow\hept{\begin{cases}x=1.6=6\\y=1.4=4\\z=1.3=3\end{cases}}\)