Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\Leftrightarrow\dfrac{2x-3}{x-1}=4\)
=>4x-4=2x-3
=>2x=1
hay x=1/2
b: \(\Leftrightarrow\sqrt{\dfrac{2x-3}{x-1}}=2\)
=>(2x-3)=4x-4
=>4x-4=2x-3
=>2x=1
hay x=1/2(nhận)
c: \(\Leftrightarrow\sqrt{2x+3}\left(\sqrt{2x-3}-2\right)=0\)
=>2x+3=0 hoặc 2x-3=4
=>x=-3/2 hoặc x=7/2
e: \(\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)
=>căn (x-5)=2
=>x-5=4
hay x=9
Lời giải:
Để biểu thức có nghĩa thì:
a) \(-7x\geq 0\Leftrightarrow x\leq 0\)
b) \(8-x\geq 0\Leftrightarrow x\leq 8\)
c) \(3x+11\geq 0\Leftrightarrow 3x\geq -11\Leftrightarrow x\geq \frac{-11}{3}\)
d) \(\frac{2x}{5}\geq 0\Leftrightarrow x\geq 0\)
e) \(-7x+5\geq 0\Leftrightarrow 5\geq 7x\Leftrightarrow x\leq \frac{5}{7}\)
f) \(\frac{1}{-2+x}\geq 0\Leftrightarrow -2+x>0\Leftrightarrow x-2>0\Leftrightarrow x>2\)
g) \(2+x^2\geq 0\) :Luôn đúng với mọi $x$ do \(x^2\geq 0\Rightarrow x^2+2\geq 2>0\)
h) \(\left\{\begin{matrix} x+7\geq 0\\ x-8\geq 0\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x\geq -7\\ x\geq 8\end{matrix}\right.\Rightarrow x\geq 8\)
i) \((x+2)(x-3)\geq 0\)
\(\Leftrightarrow \left[\begin{matrix} x+2\geq 0; x-3\geq 0\\ x+2\leq 0; x-3\leq 0\end{matrix}\right.\)
\(\Leftrightarrow \left[\begin{matrix} x\geq -2; x\geq 3\\ x\leq -2; x\leq 3\end{matrix}\right.\)
\(\Leftrightarrow \left[\begin{matrix} x\geq 3\\ x\leq -2\end{matrix}\right.\)
k) \(\left\{\begin{matrix} \frac{x+5}{3-x}\geq 0\\ 3-x\neq 0\end{matrix}\right.\)
\(\Rightarrow \left[\begin{matrix} x+5\geq 0; 3-x>0\\ x+5\leq 0; 3-x< 0\end{matrix}\right.\)
\(\Rightarrow \left[\begin{matrix} x\geq -5; x<3 \\ x\leq -5; x>3(\text{vô lý})\end{matrix}\right.\)
\(\Rightarrow 3> x\geq -5\)
1)
a) \(6=\sqrt{36}< \sqrt{40}\)
b) \(3=\sqrt{9}< \sqrt{10}\)
c) \(2\sqrt{3}< 2\sqrt{4}=4\)
d) \(3\sqrt{2}=\sqrt{18}< \sqrt{36}=6\)
e) \(7=\sqrt{49}< \sqrt{50}\)
2)
a) \(x\ge0\)
b) \(-2x+1\ge0\Leftrightarrow-2x\ge-1\Leftrightarrow x\le\dfrac{1}{2}\)
c) \(5-a\ge0\Leftrightarrow a\le5\)
d) \(2x-3>0\Leftrightarrow2x>3\Leftrightarrow x>\dfrac{3}{2}\)
e) \(-3< x< 1\)
f) \(-3x\ge-4\Leftrightarrow x\le\dfrac{4}{3}\)
g) \(x^2-2x-3\ge0\Leftrightarrow\left(x+1\right)\left(x-3\right)\ge0\Leftrightarrow-1\le x\le3\)
a: \(\Leftrightarrow2x+3=14-6\sqrt{5}\)
=>2x=11-6 căn 5
hay \(x=\dfrac{11-6\sqrt{5}}{2}\)
b: \(\Leftrightarrow\sqrt{7x}+5=11+4\sqrt{7}\)
=>căn 7x=6+4 căn 7
=>\(x=\dfrac{\left(6+4\sqrt{7}\right)^2}{7}\)
d: \(\Leftrightarrow\dfrac{1}{2}\sqrt{x-1}-\dfrac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)
=>-căn x-1=-17
=>căn x-1=17
=>x-1=289
=>x=290
1/ \(x\ge\dfrac{1}{3}\)
2/ \(\forall x\in R\)
3/ \(x\le\dfrac{5}{2}\)
4/ \(x\in\left(-\infty,-\sqrt{2}\right)\cup\left(\sqrt{2},+\infty\right)\)
5/ \(x>2\)
6/ \(x^2-3x+7\ge0\Rightarrow\forall x\in R\)
7/ \(x\ge\dfrac{1}{2}\)
8/ \(x\in\left(-\infty,-3\right)\cup\left(3,+\infty\right)\)
9/ \(\dfrac{x+3}{7-x}\ge0\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+3\ge0\\7-x>0\end{matrix}\right.\\\left\{{}\begin{matrix}x+3< 0\\7-x< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-3\le x< 7\\7< x< -3\left(voli\right)\end{matrix}\right.\)
10/ \(\left\{{}\begin{matrix}6x-1\ge0\\x+3\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ge\dfrac{1}{6}\\x\ge-3\end{matrix}\right.\Leftrightarrow x\ge\dfrac{1}{6}\)
*Căn thức luôn không âm & mẫu chứa căn luôn dương
1) Để biểu thức \(\sqrt{3x-1}\) có nghĩa thì \(3x-1\ge0\Leftrightarrow3x\ge1\Leftrightarrow x\ge\dfrac{1}{3}\)
2) Ta có \(x^2\ge0\Leftrightarrow x^2+3\ge3>0\)
Vậy với mọi x thì biểu thức \(\sqrt{x^2+3}\) có nghĩa
3) Để biểu thức \(\sqrt{5-2x}\) có nghĩa thì \(5-2x\ge0\Leftrightarrow2x\le5\Leftrightarrow x\le\dfrac{5}{2}\)
4) Để biểu thức \(\sqrt{x^2-2}\) có nghĩa thì \(x^2-2\ge0\Leftrightarrow x^2\ge2\Leftrightarrow\)\(\left[{}\begin{matrix}x\ge\sqrt{2}\\x\le-\sqrt{2}\end{matrix}\right.\)
5) Để biểu thức \(\dfrac{1}{\sqrt{7x-14}}\) có nghĩa thì \(7x-14>0\Leftrightarrow7x>14\Leftrightarrow x>2\)
6) Ta có \(x^2-3x+7=x^2-2x.\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{19}{4}=\left(x-\dfrac{3}{2}\right)^2+\dfrac{19}{4}\ge\dfrac{19}{4}>0\Leftrightarrow x^2-3x+7>0\)
Vậy với mọi x thì \(\sqrt{x^2-3x+7}\) luôn có nghĩa
7) Để biểu thức \(\sqrt{2x-1}\) có nghĩa thì \(2x-1\ge0\Leftrightarrow2x\ge1\Leftrightarrow x\ge\dfrac{1}{2}\)
8) Để biểu thức \(\sqrt{x^2-9}\) có nghĩa thì \(x^2-9\ge0\Leftrightarrow x^2\ge9\Leftrightarrow\)\(\left[{}\begin{matrix}x\ge3\\x\le-3\end{matrix}\right.\)
9) Để biểu thức \(\sqrt{\dfrac{x+3}{7-x}}\) có nghĩa thì \(\left[{}\begin{matrix}\left\{{}\begin{matrix}x+3\ge0\\7-x>0\end{matrix}\right.\\\left\{{}\begin{matrix}x+3\le0\\7-x< 0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge-3\\x< 7\end{matrix}\right.\\\left\{{}\begin{matrix}x\le-3\\x>7\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\)\(-3\le x< 7\)
10) Để biểu thức \(\sqrt{6x-1}+\sqrt{x+3}\) có nghĩa thì \(\left\{{}\begin{matrix}6x-1\ge0\\x+3\ge0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}6x\ge1\\x\ge-3\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x\ge\dfrac{1}{6}\\x\ge-3\end{matrix}\right.\)\(\Leftrightarrow\)\(x\ge\dfrac{1}{6}\)
a)
ĐKXĐ: \(x> \frac{-5}{7}\)
Ta có: \(\frac{9x-7}{\sqrt{7x+5}}=\sqrt{7x+5}\)
\(\Rightarrow 9x-7=\sqrt{7x+5}.\sqrt{7x+5}=7x+5\)
\(\Rightarrow 2x=12\Rightarrow x=6\) (hoàn toàn thỏa mãn)
Vậy......
b) ĐKXĐ: \(x\geq 5\)
\(\sqrt{4x-20}+3\sqrt{\frac{x-5}{9}}-\frac{1}{3}\sqrt{9x-45}=4\)
\(\Leftrightarrow \sqrt{4}.\sqrt{x-5}+3\sqrt{\frac{1}{9}}.\sqrt{x-5}-\frac{1}{3}\sqrt{9}.\sqrt{x-5}=4\)
\(\Leftrightarrow 2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)
\(\Leftrightarrow 2\sqrt{x-5}=4\Rightarrow \sqrt{x-5}=2\Rightarrow x-5=2^2=4\Rightarrow x=9\)
(hoàn toàn thỏa mãn)
Vậy..........
c) ĐK: \(x\in \mathbb{R}\)
Đặt \(\sqrt{6x^2-12x+7}=a(a\geq 0)\Rightarrow 6x^2-12x+7=a^2\)
\(\Rightarrow 6(x^2-2x)=a^2-7\Rightarrow x^2-2x=\frac{a^2-7}{6}\)
Khi đó:
\(2x-x^2+\sqrt{6x^2-12x+7}=0\)
\(\Leftrightarrow \frac{7-a^2}{6}+a=0\)
\(\Leftrightarrow 7-a^2+6a=0\)
\(\Leftrightarrow -a(a+1)+7(a+1)=0\Leftrightarrow (a+1)(7-a)=0\)
\(\Rightarrow \left[\begin{matrix} a=-1\\ a=7\end{matrix}\right.\) \(\Rightarrow a=7\) vì \(a\geq 0\)
\(\Rightarrow 6x^2-12x+7=a^2=49\)
\(\Rightarrow 6x^2-12x-42=0\Leftrightarrow x^2-2x-7=0\)
\(\Leftrightarrow (x-1)^2=8\Rightarrow x=1\pm 2\sqrt{2}\)
(đều thỏa mãn)
Vậy..........
a) \(2\sqrt{2x}-5\sqrt{8x}+7\sqrt{18x}=28\) (*)
đk: x >/ 0
(*) \(\Leftrightarrow2\sqrt{2x}-10\sqrt{2x}+21\sqrt{2x}=28\)
\(\Leftrightarrow13\sqrt{2x}=28\) \(\Leftrightarrow\sqrt{2x}=\dfrac{28}{13}\Leftrightarrow2x=\left(\dfrac{28}{13}\right)^2\Leftrightarrow x=\dfrac{392}{169}\left(N\right)\)
Kl: \(x=\dfrac{392}{169}\)
b) \(\sqrt{4x-20}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9x-45}=4\) (*)
đk: x >/ 5
(*) \(\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)
\(\Leftrightarrow2\sqrt{x-5}=4\Leftrightarrow\sqrt{x-5}=2\Leftrightarrow x-5=4\Leftrightarrow x=9\left(N\right)\)
Kl: x=9
c) \(\sqrt{\dfrac{3x-2}{x+1}}=2\) (*)
Đk: \(\left[{}\begin{matrix}x< -1\\x\ge\dfrac{2}{3}\end{matrix}\right.\)
(*) \(\Leftrightarrow\dfrac{3x-2}{x+1}=4\Leftrightarrow3x-2=4x+4\Leftrightarrow x=-6\left(N\right)\)
Kl: x=-6
d) \(\dfrac{\sqrt{5x-4}}{\sqrt{x+2}}=2\) (*)
Đk: \(x\ge\dfrac{4}{5}\)
(*) \(\Leftrightarrow\sqrt{5x-4}=2\sqrt{x+2}\Leftrightarrow5x-4=4x+8\Leftrightarrow x=12\left(N\right)\)
Kl: x=12
Tìm x để căn có nghĩa ak mn giúp e với ak
\(a,ĐK:\dfrac{3}{x+7}\ge0\Leftrightarrow x+7>0\left(3>0;x+7\ne0\right)\Leftrightarrow x>-7\\ b,ĐK:\dfrac{-2}{5-x}\ge0\Leftrightarrow5-x< 0\left(2-< 0;5-x\ne0\right)\Leftrightarrow x>5\\ c,ĐK:x^2-7x+10\ge0\Leftrightarrow\left(x-5\right)\left(x-2\right)\ge0\\ \Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-5\ge0\\x-2\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x-5\le0\\x-2\le0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\ge5\\x\le2\end{matrix}\right.\)
\(d,ĐK:x^2-8x+10\ge0\Leftrightarrow\left(x-4-\sqrt{6}\right)\left(x-4+\sqrt{6}\right)\ge0\\ \Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-4-\sqrt{6}\ge0\\x-4+\sqrt{6}\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x-4-\sqrt{6}\le0\\x-4+\sqrt{6}\le0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge4+\sqrt{6}\\x\ge4-\sqrt{6}\end{matrix}\right.\\\left\{{}\begin{matrix}x\le4+\sqrt{6}\\x\le4-\sqrt{6}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\ge4+\sqrt{6}\\x\le4-\sqrt{6}\end{matrix}\right.\)
\(e,ĐK:9x^2+1\ge0\Leftrightarrow x\in R\left(9x^2+1\ge1>0\right)\)