K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: ΔABC vuông tại A 

mà AM là đường trung tuyến ứng với cạnh huyền BC

nên BC=2AM

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(AB^2=BH\cdot BC\)

hay \(AB^2=2\cdot BH\cdot AM\)

16 tháng 12 2021
a, AB là tiếp tuyến của đường tròn (O) ⇒AB vuông góc OB ⇒ΔAOB vuông tại B +, AO²=AB²+BO² (pytago) AB²=5²-3²=16 ⇒AB=4cm +, BO²=OH.OA (hệ thức lượng) ⇒OH=3²/5=1,8cm +, Sin OAB=OB/OA=3/5 ⇒Góc OAB=40°58' +, ΔODH vuông tại H ⇒OD²=OH²+DH² ⇒DH=3²-1,8²=5,76 ⇒DH=2,4 +, BD=2DH=4,8 b. Ta có OH là phân giác góc BOD (do ΔOBD cân tại O, OH là đg cao đồng thời là cân giác) mà A€OH ⇒OA là phân giác của BOC ⇒góc AOB=góc AOD +, ΔABO và ΔADO có OB=OD=R AO chung ​góc AOB=góc AOD ⇒ΔABO=ΔADO (c.g.c) ⇒Góc ABO=góc ADO=90° ⇒AD vuông góc OD ⇒AD là tiếp tuyến c. B, M, D cùng € 1 đg tròn. Đg kính BM ⇒góc BDM=90° ⇒BD vuông góc DM Mà BD vuông góc OA ⇒MD//OA d. Ta có AB=AD (t/c 2 t² cắt nhau) ND=NM (t/c 2 t² cắt nhau) mà AN=AD+DN ⇒AN=AB+MN AHDI là hcn là vô lí (hình vẽ)

Bài tập Tất cả

14 tháng 12 2021

a, Vì SA là tiếp tuyến đường tròn (O) với A là tiếp điểm 

=> ^SAO = 900 hay tam giác SAO vuông tại A

Theo định lí Pytago tam giác SAO ta có : 

\(SA=\sqrt{SO^2-AO^2}=\sqrt{25-9}=4\)cm 

b, Xét tam giác SAO vuông tại A, AH là đường cao 

Áp dụng hệ thức : \(AH.SO=AS.AO\Rightarrow AH=\frac{AS.AO}{SO}=\frac{4.3}{5}=\frac{12}{5}\)cm 

Áp dụng hệ thức : \(AO^2=HO.SO\Rightarrow HO=\frac{AO^2}{SO}=\frac{9}{5}\)cm 

c, Ta có : SB = SA ( tc tiếp tuyến cắt nhau ) 

AO = BO = R 

Vậy SO là đường trung trực đoạn AB 

mà AH vuông SO => HB vuông SO 

=> A;H;B thẳng hàng 

18 tháng 9 2020

mơn nhoa

24 tháng 7 2018

1. Hình:

A B C H M

~~~

a/Ta có: \(\widehat{C}=90^o-\widehat{B}=90^o-30^o=60^o\)

Theo tỉ số lượng giác có:

\(sin\widehat{B}=\dfrac{AC}{BC}\)\(\Rightarrow BC=\dfrac{AC}{sin\widehat{B}}=\dfrac{6}{sin30^o}=12\left(cm\right)\)

Áp dụng pitago vào tam giác ABC v tại A có: BC2 = AB2 + AC2

hay 122 = AB2 + 62

=> AB2 = 122 - 62 = 108

=> AB = \(6\sqrt{3}\approx10,4\left(cm\right)\)

b/ Có: AH _|_ BC

Theo hệ thức lượng có:

AB2 = BC . BH

=> \(BH=\dfrac{AB^2}{BC}=\dfrac{10,4^2}{12}\approx9\left(cm\right)\)

AM là trung truyến của t/g ABC => AM = 1/2BC = 6(cm)

=> HM = BH - BM = 9 - 6 = 3(cm)

xét tam giác AHM có góc H = 90o, theo pitago có:

\(AM^2=AH^2+HM^2\Rightarrow AH^2=AM^2-HM^2=6^2-3^2=27\Rightarrow AH\approx5,2\left(cm\right)\)

=> \(S_{\Delta AHM}=\dfrac{1}{2}\cdot HM\cdot AH=\dfrac{1}{2}\cdot3\cdot5,2=7,8\left(cm^2\right)\)

24 tháng 7 2018

nốt bài 2.........

A B C D H

~~~

a, theo tỉ số lg giác có:

\(sinC=\dfrac{AB}{BC}\Rightarrow BC=\dfrac{AB}{sinC}=\dfrac{10}{sin40^o}\approx15,6\left(cm\right)\)

b, A/dung pitago vào t/g ABC v tại A

=> \(AC=\sqrt{BC^2-AB^2}=\sqrt{15,6^2-10^2}\approx12\left(cm\right)\)

vì AD là p/g góc A nên:

\(\dfrac{BD}{AB}=\dfrac{CD}{AC}=\dfrac{AD+CD}{AB+AC}=\dfrac{BC}{10+12}=\dfrac{15,6}{22}=\dfrac{39}{55}\Rightarrow BD=\dfrac{39}{55}\cdot AB=\dfrac{39}{55}\cdot10\approx7,1\left(cm\right)\)

kẻ AH _|_ BC:

a/d hệ thức lượng có:

\(\left\{{}\begin{matrix}AB^2=BC\cdot BH\\BC\cdot AH=AB\cdot AC\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=\dfrac{10^2}{15,6}\approx6,4\left(cm\right)\\AH=\dfrac{AB\cdot AC}{BC}=\dfrac{10\cdot12}{15,6}\approx7,69\left(cm\right)\end{matrix}\right.\)

Ta có: HD = BD - BH = 7,1 - 6,4 = 0,7(cm)

A/dung pitago vào tam giác AHD v tại H có:

\(AD^2=AH^2+HD^2=7,69^2+0,7^2=59,78\Rightarrow AD\approx7,72\left(cm\right)\)