\(\dfrac{1}{15}+\dfrac{1}{16}+\dfrac{1}{17}+...+\dfrac{1}{43}+\dfr...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 3 2017

\(A=\dfrac{3}{4}\cdot\dfrac{8}{9}\cdot\dfrac{15}{16}\cdot...\cdot\dfrac{899}{900}\)

\(A=\dfrac{1\cdot3}{2\cdot2}\cdot\dfrac{2\cdot4}{3\cdot3}\cdot\dfrac{3\cdot5}{4\cdot4}\cdot...\cdot\dfrac{29\cdot31}{30\cdot30}\)

\(A=\dfrac{1\cdot\left(2\cdot3\cdot4\cdot5\cdot...\cdot29\right)^2\cdot30\cdot31}{\left(2\cdot3\cdot4\cdot...\cdot30\right)^2}\)

\(A=\dfrac{1\cdot\left(2\cdot3\cdot4\cdot5\cdot...\cdot29\right)^2\cdot30\cdot31}{\left(2\cdot3\cdot4\cdot5\cdot...\cdot29\right)^2\cdot30\cdot30}\)

\(A=\dfrac{1\cdot31}{30}=\dfrac{31}{30}\)

29 tháng 3 2017

Ta có : \(\dfrac{1}{101}>\dfrac{1}{300}\)

...

\(\dfrac{1}{299}>\dfrac{1}{300}\)

Do đó :

\(\dfrac{1}{101}+\dfrac{1}{102}+..+\dfrac{1}{300}>\dfrac{1}{300}+\dfrac{1}{300}..+\dfrac{1}{300}\)

\(\Rightarrow\dfrac{1}{101}+\dfrac{1}{102}+..+\dfrac{1}{300}>\dfrac{200}{300}=\dfrac{2}{3}\)

Vậy...

26 tháng 3 2017

Ngại làm lắm

19 tháng 7 2017

\(D=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{10^2}\)

\(\Leftrightarrow D=\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+...+\dfrac{1}{10.10}\)

\(\Leftrightarrow D< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{9.10}\)

\(\Leftrightarrow D< \dfrac{2-1}{1.2}+\dfrac{3-2}{2.3}+\dfrac{4-3}{3.4}+...+\dfrac{10-9}{9.10}\)

\(\Leftrightarrow D< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}\)

\(\Leftrightarrow D< 1-\dfrac{1}{10}\)

\(\Leftrightarrow D< \dfrac{9}{10}< \dfrac{10}{10}=1\)

\(\Leftrightarrow D< 1\left(đpcm\right)\)

19 tháng 7 2017

Các phần còn lại tương tự như a).

5 tháng 5 2018

\(\dfrac{5}{2x1}+\dfrac{4}{1x11}+\dfrac{3}{11x2}+\dfrac{1}{2x15}+\dfrac{13}{15x4}+\dfrac{15}{4x13}\)

=7x(\(\dfrac{5}{2x7}+\dfrac{4}{7x11}+\dfrac{3}{11x14}+\dfrac{1}{14x15}+\dfrac{13}{15x28}+\dfrac{15}{28x43}\))

=7x\(\dfrac{1}{2}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{15}+\dfrac{1}{15}-\dfrac{1}{28}+\dfrac{1}{28}-\dfrac{1}{43}\)=7x(\(\dfrac{1}{2}-\dfrac{1}{43}\))

=7x\(\dfrac{41}{86}\)

=\(\dfrac{287}{86}\)

5 tháng 5 2018

5/2x1+4/1x11+3/11x2+1/2x15+13/15x4+15/4x43=7x(5/2x7+4/7x11+3/11x14+1/14x15+13/15x28+15/28x43)=7x(1/2-1/7+1/7-1/11+1/11-1/14+1/14+1/15+1/15-1/28+1/28-1/43)=7x(1/2-1/43)=7x41/86=287/86

7 tháng 4 2017

bài 2

a;đặt biểu thức là S
S < 1/1.2 + 1/2.3 + .......1/(n-1)n
= 1- 1/2 +1 /2 -1/3+........ + 1/n-1 - 1/n

= 1 -1/n <1

vậy S < 1

27 tháng 3 2017

A=\(\dfrac{2}{7}+\dfrac{-3}{8}+\dfrac{11}{7}+\dfrac{1}{3}+\dfrac{1}{7}+\dfrac{5}{-3}\)

A=\(\left(\dfrac{2}{7}+\dfrac{11}{7}+\dfrac{1}{7}\right)+\left(\dfrac{1}{3}+\dfrac{5}{-3}\right)+\dfrac{-3}{8}\)

A=\(2+\dfrac{-4}{3}+\dfrac{-3}{8}\)

A=\(\dfrac{7}{24}\)

B=\(\dfrac{3}{17}+\dfrac{-5}{13}+\dfrac{-18}{35}+\dfrac{14}{17}+\dfrac{17}{-35}+\dfrac{-8}{13}\)

B=\(\left(\dfrac{3}{17}+\dfrac{14}{17}\right)+\left(\dfrac{-18}{35}+\dfrac{17}{-35}\right)+\left(\dfrac{-5}{13}+\dfrac{-8}{13}\right)\)

B=\(\dfrac{17}{17}+\dfrac{-35}{35}+\dfrac{-13}{13}\)

B=\(1+\left(-1\right)+\left(-1\right)=-1\)

C=\(\dfrac{-3}{17}+\left(\dfrac{2}{3}+\dfrac{3}{17}\right)\)

C=\(\dfrac{-3}{17}+\dfrac{2}{3}+\dfrac{3}{17}=\left(\dfrac{-3}{17}+\dfrac{3}{17}\right)+\dfrac{2}{3}\)

C=0+\(\dfrac{2}{3}=\dfrac{2}{3}\)

D=\(\left(\dfrac{-1}{6}+\dfrac{5}{-12}\right)+\dfrac{7}{12}\)

D=\(\dfrac{-1}{6}+\dfrac{5}{-12}+\dfrac{7}{12}\)

D=\(\dfrac{-2}{12}+\dfrac{-5}{12}+\dfrac{7}{12}=\left(\dfrac{-2}{12}+\dfrac{-5}{12}\right)+\dfrac{7}{12}\)

D=\(\dfrac{-7}{12}+\dfrac{7}{12}=0\)

22 tháng 3 2017

11) \(\dfrac{5}{7}\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{4}{7}\right)+\left(\dfrac{1}{3}-\dfrac{1}{2}-\dfrac{4}{7}\right):\dfrac{7}{5}\)

= \(\dfrac{5}{7}\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{4}{7}\right)+\left(\dfrac{1}{3}-\dfrac{1}{2}-\dfrac{4}{7}\right)\cdot\dfrac{5}{7}\)

= \(\dfrac{5}{7}\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{4}{7}+\dfrac{1}{3}-\dfrac{1}{2}-\dfrac{4}{7}\right)\)

= \(\dfrac{5}{7}\cdot0\)

=0

12) \(\dfrac{43}{5}\left(\dfrac{17}{3}-\dfrac{16}{9}+2\right)-\dfrac{43}{5}\left(\dfrac{17}{3}-\dfrac{16}{9}\right)\)

= \(\dfrac{43}{5}\left(\dfrac{17}{3}-\dfrac{16}{9}+2-\dfrac{17}{3}+\dfrac{16}{9}\right)\)

= \(\dfrac{43}{5}\cdot2=\dfrac{43}{10}\)

25 tháng 7 2017

11, 5/7( 1/2-1/3+1/4)+ (1/3-1/2-1/4):7/5

= 5/7.(1/2 - 1/3 + 1/4 )+( 1/3 - 1/2 - 1/4). 5/7

= 5/7.(1/2 - 2/3 + 1/4 + 1/3 - 1/2 - 1/4)

= 5/7 . -1/3

= -5/21

12, 43/5.(17/3 - 16/9 + 2)- 43/5. (17/3 - 16/9)

= 43/5.( 17/3 - 16/9 + 2 - 17/3 + 16/9)

= 43/5 . 2

= 86/5

Giải

Ta có : \(\dfrac{1}{2^2}< \dfrac{1}{1.2};\dfrac{1}{3^2}< \dfrac{1}{2.3};\dfrac{1}{4^2}< \dfrac{1}{3.4};...;\dfrac{1}{20^2}< \dfrac{1}{19.20}\)

\(\Rightarrow\)D < \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{19.20}\)

Nhận xét: \(\dfrac{1}{1.2}=1-\dfrac{1}{2};\dfrac{1}{2.3}=\dfrac{1}{2}-\dfrac{1}{3};\dfrac{1}{3.4}=\dfrac{1}{3}-\dfrac{1}{4};...;\dfrac{1}{19.20}=\dfrac{1}{19}-\dfrac{1}{20}\)

\(\Rightarrow\) D< 1- \(\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{19}-\dfrac{1}{20}\)

D< 1 - \(\dfrac{1}{20}\)

D< \(\dfrac{19}{20}\)<1

\(\Rightarrow\)D< 1

Vậy D=\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{5^2}\)<1

30 tháng 4 2017

A=\(\dfrac{1}{2^2}+\dfrac{1}{4^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}\)

A=\(\dfrac{1}{2^2.1}+\dfrac{1}{2^2.2^2}+\dfrac{1}{3^2.2^2}+...+\dfrac{1}{50^2.2^2}\)

A=\(\dfrac{1}{2^2}\left(1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{50^2}\right)\)

\(A=\dfrac{1}{2^2}\left(1+\dfrac{1}{2.2}+\dfrac{1}{3.3}+...+\dfrac{1}{50.50}\right)\)

Ta có :

\(\dfrac{1}{2.2}< \dfrac{1}{1.2};\dfrac{1}{3.3}< \dfrac{1}{2.3};\dfrac{1}{4.4}< \dfrac{1}{3.4};...;\dfrac{1}{50.50}< \dfrac{1}{49.50}\)

\(\Rightarrow A< \dfrac{1}{2^2}\left(1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\right)\)Nhận xét :

\(\dfrac{1}{1.2}< 1-\dfrac{1}{2};\dfrac{1}{2.3}< \dfrac{1}{2}-\dfrac{1}{3};...;\dfrac{1}{49.50}< \dfrac{1}{49}-\dfrac{1}{50}\)

\(\Rightarrow A< \dfrac{1}{2^2}\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\right)\)

A<\(\dfrac{1}{2^2}\left(1-\dfrac{1}{50}\right)\)

A<\(\dfrac{1}{4}.\dfrac{49}{50}\)<1

A<\(\dfrac{49}{200}< \dfrac{1}{2}\)

\(\Rightarrow A< \dfrac{1}{2}\)