\(\widehat{xOy}\), vẽ đường thẳng song song với...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Giúp mình nhanh với, mình cần gấp:1. Cho góc vuông \(\widehat{xOy}\). Lấy A thuộc tia Ox, B thuộc tia Ox, B thuộc ti a Oy (OA<OB). Từ A kẻ đường thẳng song song với Oy, từ B kẻ đường thẳng song song với Ox, chúng cặt nhau ở C.a) Tính \(\widehat{ACB}\)b) Kẻ tia phân giác của  \(\widehat{xOy}\), cắt AC ở D. Tính góc ADO;c) Kẻ tia phân giác của \(\widehat{ACB}\), cắt OB ở E. Chứng minh OD // CE.2. Cho tam giác ABC có...
Đọc tiếp

Giúp mình nhanh với, mình cần gấp:

1. Cho góc vuông \(\widehat{xOy}\). Lấy A thuộc tia Ox, B thuộc tia Ox, B thuộc ti a Oy (OA<OB). Từ A kẻ đường thẳng song song với Oy, từ B kẻ đường thẳng song song với Ox, chúng cặt nhau ở C.

a) Tính \(\widehat{ACB}\)

b) Kẻ tia phân giác của  \(\widehat{xOy}\), cắt AC ở D. Tính góc ADO;

c) Kẻ tia phân giác của \(\widehat{ACB}\), cắt OB ở E. Chứng minh OD // CE.

2. Cho tam giác ABC có AB = AC. Trên nửa mặt phẳng bờ AB không chứa C lấy M sao cho \(\widehat{BAM}\) = \(\widehat{ABC}\) và AM = AB. Trên nửa mặt phẳng bờ AC không chứa B lấy N sao cho \(\widehat{CAN}\) =  \(\widehat{ACB}\)và AN =AC. Từ A vẽ đường thẳng d vuông góc với BC.

Chứng minh: Đường thẳng d là đường trung trực của đoạn thẳng MN.

( Có vẽ hình nhé. Cảm ơn nhiều ạ!)


 

0
Giúp mình nhanh với, mình cần gấp:1. Cho góc vuông \(\widehat{xOy}\). Lấy A thuộc tia Ox, B thuộc tia Ox, B thuộc ti a Oy (OA<OB). Từ A kẻ đường thẳng song song với Oy, từ B kẻ đường thẳng song song với Ox, chúng cặt nhau ở C.a) Tính \(\widehat{ACB}\)b) Kẻ tia phân giác của  \(\widehat{xOy}\), cắt AC ở D. Tính góc ADO;c) Kẻ tia phân giác của \(\widehat{ACB}\), cắt OB ở E. Chứng minh OD // CE.2. Cho tam giác ABC có...
Đọc tiếp

Giúp mình nhanh với, mình cần gấp:

1. Cho góc vuông \(\widehat{xOy}\). Lấy A thuộc tia Ox, B thuộc tia Ox, B thuộc ti a Oy (OA<OB). Từ A kẻ đường thẳng song song với Oy, từ B kẻ đường thẳng song song với Ox, chúng cặt nhau ở C.

a) Tính \(\widehat{ACB}\)

b) Kẻ tia phân giác của  \(\widehat{xOy}\), cắt AC ở D. Tính góc ADO;

c) Kẻ tia phân giác của \(\widehat{ACB}\), cắt OB ở E. Chứng minh OD // CE.

2. Cho tam giác ABC có AB = AC. Trên nửa mặt phẳng bờ AB không chứa C lấy M sao cho \(\widehat{BAM}\) = \(\widehat{ABC}\) và AM = AB. Trên nửa mặt phẳng bờ AC không chứa B lấy N sao cho \(\widehat{CAN}\) =  \(\widehat{ACB}\)và AN =AC. Từ A vẽ đường thẳng d vuông góc với BC.

Chứng minh: Đường thẳng d là đường trung trực của đoạn thẳng MN.

( Có vẽ hình nhé. Cảm ơn nhiều ạ!)

1
13 tháng 10 2020

là oxy=7

Giúp mình nhanh với, mình cần gấp:1. Cho góc vuông \(\widehat{xOy}\). Lấy A thuộc tia Ox, B thuộc tia Ox, B thuộc ti a Oy (OA<OB). Từ A kẻ đường thẳng song song với Oy, từ B kẻ đường thẳng song song với Ox, chúng cặt nhau ở C.a) Tính \(\widehat{ACB}\)b) Kẻ tia phân giác của  \(\widehat{xOy}\), cắt AC ở D. Tính góc ADO;c) Kẻ tia phân giác của \(\widehat{ACB}\), cắt OB ở E. Chứng minh OD // CE.2. Cho tam giác ABC có...
Đọc tiếp

Giúp mình nhanh với, mình cần gấp:

1. Cho góc vuông \(\widehat{xOy}\). Lấy A thuộc tia Ox, B thuộc tia Ox, B thuộc ti a Oy (OA<OB). Từ A kẻ đường thẳng song song với Oy, từ B kẻ đường thẳng song song với Ox, chúng cặt nhau ở C.

a) Tính \(\widehat{ACB}\)

b) Kẻ tia phân giác của  \(\widehat{xOy}\), cắt AC ở D. Tính góc ADO;

c) Kẻ tia phân giác của \(\widehat{ACB}\), cắt OB ở E. Chứng minh OD // CE.

2. Cho tam giác ABC có AB = AC. Trên nửa mặt phẳng bờ AB không chứa C lấy M sao cho \(\widehat{BAM}\) = \(\widehat{ABC}\) và AM = AB. Trên nửa mặt phẳng bờ AC không chứa B lấy N sao cho \(\widehat{CAN}\) =  \(\widehat{ACB}\)và AN =AC. Từ A vẽ đường thẳng d vuông góc với BC.

Chứng minh: Đường thẳng d là đường trung trực của đoạn thẳng MN.

( Có vẽ hình nhé. Cảm ơn nhiều ạ!)

1
13 tháng 10 2020

hệ mày

19 tháng 11 2017

Bạn vẽ hình rồi chụp lên đc ko

19 tháng 11 2017

bài này dễ à bạn vẽ thê đường phụ một tí là ok cmnr 

giúp ik mn

28 tháng 11 2016

x O y A z B M H K

Giải:
a) Xét \(\Delta MOA,\Delta MOB\) có:

\(\widehat{AOM}=\widehat{OMB}\) ( cặp góc so le trong và AM // Oy )

OM: cạnh chung

\(\widehat{AMO}=\widehat{BOM}\) ( cặp góc so le trong và AM // Oy )

\(\Rightarrow\Delta MOA=\Delta MOB\left(g-c-g\right)\)

\(\Rightarrow OA=OB\) ( cạnh t/ứng )

\(\Rightarrow MA=MB\) ( cạnh t/ứng )

b) Xét \(\Delta HOM\) có: \(\widehat{HOM}+\widehat{HMO}=90^o\) ( do \(\widehat{H}=90^o\) )

Xét \(\Delta KOM\) có: \(\widehat{MOK}+\widehat{OMK}=90^o\) ( do \(\widehat{K}=90^o\) )

\(\widehat{HOM}=\widehat{MOK}\left(=\frac{1}{2}\widehat{O}\right)\)

\(\Rightarrow\widehat{HMO}=\widehat{OMK}\)

Xét \(\Delta HOM,\Delta KOM\) có:

\(\widehat{HOM}=\widehat{KOM}\left(=\frac{1}{2}\widehat{O}\right)\)

OM: cạnh chung

\(\widehat{HMO}=\widehat{OMK}\) ( cmt )

\(\Rightarrow\Delta HOM=\Delta KOM\left(g-c-g\right)\)

\(\Rightarrow MH=MK\) ( cạnh t/ứng )

Vậy...