Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)0,310=(0,32)10=0,910
0,9>0,1=>0,910>0,110hay0,320>0,110
b)430+320=(43)10+(32)10=(43+32)10=7310
3.24=72
có 73>72 => 7310>7210 hay 430+320>3.2410 (câu này mình ko chắc đúng đâu)
a) Ta có: 1020= (102)10=10010>9010
\(\Rightarrow\)1020>9010
b) Ta có: (-5)30 = (-53)10 =(-125)10
và (-3)50 = (-35)10 = (-243)10
Mà (-125)10 < (-243)10 => (-5)10 < (-3)50
c)- 0,320=(0,32)10=0,0910.
Do 0,09<0,1 =>0,0910<0,110.
=>0,110>0,320.
d) Ta có : \(\left(\dfrac{1}{16}\right)^{10}=\left(\dfrac{1}{2^4}\right)^{10}=\dfrac{1}{2^{40}}\)
\(\left(\dfrac{1}{2}\right)^{50}=\dfrac{1}{2^{50}}\)
Vì \(2^{40}< 2^{50}\Rightarrow\dfrac{1}{2^{40}}>\dfrac{1}{2^{50}}\Rightarrow\left(\dfrac{1}{16}\right)^{10}>\left(\dfrac{1}{2}\right)^{50}\)
Ta có: \(\left(\frac{1}{16}\right)^{10}=\left(\frac{1}{2^4}\right)^{10}=\frac{1}{2^{40}}\)
\(\left(\frac{1}{2}\right)^{50}=\frac{1}{2^{50}}\)
Vì \(2^{40}< 2^{50}\Rightarrow\frac{1}{2^{40}}>\frac{1}{2^{50}}\)hay \(\left(\frac{1}{16}\right)^{10}>\left(\frac{1}{2}\right)^{50}\)
Ta có: \(\left(0,3\right)^{20}=\left[\left(0,3\right)^2\right]^{10}=\left(0,09\right)^{10}\)
Vì \(0,09< 0,1\Rightarrow\left(0,09\right)^{10}< \left(0,1\right)^{100}\)
hay \(\left(0,3\right)^{20}< \left(0,1\right)^{10}\)
b)Ta có:
\(17^{20}=17^{4.5}=\left(17^4\right)^5=83521^5>71^5\)
c)Ta có:
\(0,3^{20}=\left(0,3^2\right)^{10}=0,09^{10}< 0,1^{10}\)
d)Ta có:
\(\left(\frac{1}{16}\right)^{10}=\left(\frac{1}{2}\right)^{40}\)
\(\left(\frac{1}{8}\right)^{13}=\left(\frac{1}{2}\right)^{39}\)
Vì \(\left(\frac{1}{2}\right)^{40}>\left(\frac{1}{2}\right)^{39}\)
nên \(\left(\frac{1}{16}\right)^{10}>\left(\frac{1}{8}\right)^{13}\)
e)Ta có:
\(3^{21}=3^{20}.3=9^{10}.3\)
\(2^{31}=2^{30}.2=8^{10}.2\)
Vì \(9^{10}.3>8^{10}.2\)
\(\Rightarrow3^{21}>2^{31}\)
a) Ta có: \(99^{20}=\left(99^2\right)^{10}=9801^{10}< 9999^{10}\Rightarrow99^{20}< 9999^{10}\)
b) Ta có: \(2^{31}=\left(2\frac{31}{21}\right)^{21}=2,7822^{21}< 3^{21}\Rightarrow2^{31}< 3^{21}\)
c) Ta có: \(3^{30}=\left(3^3\right)^{10}=27^{10}\)
\(2^{30}=\left(2^3\right)^{10}=8^{10}\)
\(4^{30}=\left(4^3\right)^{10}=64^{10}\)
Lại có: \(3.24^{10}=2.24^{10}+24^{10}\Rightarrow24^{10}< 27^{10}\left(1\right)\)
\(2.24^{10}< 48^{10}< 64^{10}\left(2\right)\)
Từ 1,2 => \(24^{10}+2.24^{10}< 27^{10}+64^{10}\Rightarrow3.24^{10}< 8^{10}+27^{10}+64^{10}\)
\(\Rightarrow3.24^{10}< 3^{30}+2^{30}+4^{30}\)
c) 99^20 = (99^2)^10 = 9801^10
Vì 9801<9999 => 9801^10<9999^10
hay 99^20<9999^10
a) Ta có 8^51>8^50
8^50 = (8^2)^25 = 64^25
Vì 48<64 => 48^25<64^25
hay 48^25<8^50
mà 8^50<8^51
=> 48^25<8^51
a) 1020 = 10010 => 1020 > 9010
b) 0,320 = 0,910 => 0,110 < 0,910