\(27x^3\)+\(\f...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2020

a) Ta có: \(27x^3+\frac{y^3}{8}\)

\(=\left(3x\right)^3+\left(\frac{y}{2}\right)^3\)

\(=\left(3x+\frac{y}{2}\right)\left(9x^2-\frac{3xy}{2}+\frac{y^2}{4}\right)\)

b) Ta có: \(x^3+y^3+z^3-3xyz\)

\(=\left(x+y\right)^3-3x^2y-3xy^2+z^3-3xyz\)

\(=\left(x+y+z\right)\left[\left(x+y\right)^2-z\left(x+y\right)+z^2\right]-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left[\left(x+y\right)^2-z\left(x+y\right)+z^2-3xy\right]\)

\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)\)

c) Ta có: \(x^{m+2}+x^m\)

\(=x^m\cdot x^2+x^m\)

\(=x^m\left(x^2+1\right)\)

d) Ta có: \(x^{k+1}-x^{k-1}\)

\(=x^{k-1}\cdot x^2-x^{k-1}\cdot1\)

\(=x^{k-1}\left(x^2-1\right)\)

\(=x^{k-1}\cdot\left(x-1\right)\left(x+1\right)\)

f) Ta có: \(\left(a+b-c\right)\cdot x^2-\left(c-a-b\right)x\)

\(=x^2\left(a+b-c\right)+x\left(a+b-c\right)\)

\(=x\left(a+b-c\right)\left(x+1\right)\)

e) Ta có: \(\left(a-2b\right)^{3n+1}\)

\(=\left(a-2b\right)^{3n}\cdot\left(a-2b\right)\)

n) Ta có: \(\left(x+y\right)^3-x^3-y^3\)

\(=\left(x+y\right)^3-\left(x^3+y^3\right)\)

\(=\left(x+y\right)^3-\left(x+y\right)\left(x^2-xy+y^2\right)\)

\(=\left(x+y\right)\left(x^2+2xy+y^2-x^2+xy-y^2\right)\)

\(=3xy\left(x+y\right)\)

9 tháng 9 2016

câu a nè = (4x-1)(2x-3) 

câu f = (x+y+z) ( x^ 2 + y^2 + z^2 +xy + yz + zx)

9 tháng 9 2016

Có câu nào khó hơn không bạn

5 tháng 11 2016

a/ x3 + xz + y2 z - xyz + y3 

= (x + y)(x2 - xy + y2) + z(x2 - xy + y2)

= (x2 - xy + y2)(x + y + z)

5 tháng 11 2016

Nhiều vậy. Xíu m làm

1 tháng 11 2016

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

27 tháng 9 2016

mk học lớp 7 thui

5 tháng 1 2019

\(\frac{2}{5}x\left(y-1\right)-\frac{2}{5}y\left(y-1\right)\)

\(=\left(y-1\right)\left[\left(\frac{2}{5}x-\frac{2}{5}y\right)\right]\)

\(=\left(y-1\right)\frac{2}{5}\left(x-y\right)\)

5 tháng 1 2019

\(\frac{1}{25}x^2-64y^2\)

\(=\left(\frac{1}{5}x\right)^2-8^2\)

\(=\left(\frac{1}{5}x+8\right)\left(\frac{1}{5}x-8\right)\)

Phân tích các đa thức sau thành nhân tử: * \(x^3-7x+6\) * \(x^3-9x^2+6x+16\) * \(x^3-6x^2-x+30\) * \(2x^3-x^2+5x+3\) * \(27x^3-27x^2+18x-4\) * \(x^2+2xy+y^2-x-y-12\) * \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\) * \(4x^4-32x^2+1\) * \(3\left(x^4+x^2+1\right)-\left(x^2+x+1\right)^2\) * \(64x^4+y^4\) * \(a^6+a^4+a^2b^2+b^4-b^6\) * \(x^3+3xy+y^3-1\) * \(4x^4+4x^3+5x^2+2x+1\) * \(x^8+x+1\) * \(x^8+3x^4+4\) * \(3x^2+22xy+11x+37y+7y^2+10\) *...
Đọc tiếp

Phân tích các đa thức sau thành nhân tử:

* \(x^3-7x+6\)

* \(x^3-9x^2+6x+16\)

* \(x^3-6x^2-x+30\)

* \(2x^3-x^2+5x+3\)

* \(27x^3-27x^2+18x-4\)

* \(x^2+2xy+y^2-x-y-12\)

* \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)

* \(4x^4-32x^2+1\)

* \(3\left(x^4+x^2+1\right)-\left(x^2+x+1\right)^2\)

* \(64x^4+y^4\)

* \(a^6+a^4+a^2b^2+b^4-b^6\)

* \(x^3+3xy+y^3-1\)

* \(4x^4+4x^3+5x^2+2x+1\)

* \(x^8+x+1\)

* \(x^8+3x^4+4\)

* \(3x^2+22xy+11x+37y+7y^2+10\)

* \(x^4-8x+63\)

* \(\left(x+y+z\right)\left(xy+yz+zx\right)-xyz\)

* \(xy\left(x+y\right)-yz\left(y+z\right)+xz\left(x-z\right)\)

* \(\left(a+b\right)\left(a^2-b^2\right)+\left(b+c\right)\left(b^2-c^2\right)+\left(c+a\right)\left(c^2-a^2\right)\)

* \(a^4\left(b-c\right)+b^4\left(c-a\right)+c^4\left(a-b\right)\)

* \(a^3+b^3+c^3-3abc=\left(a+b\right)^3-3ab^2+c^3-3abc\)

* \(\left(a+b+c\right)^3-a^3-b^3-c^3=[\left(a+b\right)c]^3-a^3-b^3-c^3\)

* \(\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3\)

\([\) Các bạn làm được bài nài thì làm giúp mk với nha,làm vài câu cũng được\(]\)

Mk mệt quá rồi làm giúp mk với nha

3
4 tháng 12 2017

\(1,x^3-7x+6\)

\(=x^3+3x^2-3x^2-9x+2x+6\)

\(=x^2\left(x+3\right)-3x\left(x+3\right)+2\left(x+3\right)\)

\(=\left(x+3\right)\left(x^2-3x+2\right)\)

\(=\left(x+3\right)\left(x^2-2x-x+2\right)\)

\(=\left(x+3\right)\left(x-2\right)\left(x-1\right)\)

\(2,x^3-9x^2+6x+16\)

\(=x^3+x^2-10x^2-10x+16x+16\)

\(=x^2\left(x+1\right)-10x\left(x+1\right)+16\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2-10x+16\right)\)

\(=\left(x+1\right)\left(x^2-2x-8x+16\right)\)

\(=\left(x+1\right)\left(x-8\right)\left(x-2\right)\)

4 tháng 12 2017

mk ms lm hai câu thôi mà đã mệt r , bh mk lm bt mai đi học ,lúc khác lm đ cko bn

13 tháng 8 2019

\(\left(a-b\right)^2-\left(b-a\right)\)

\(=\left(a-b\right)^2+\left(a-b\right)\)

\(=\left(a-b\right)\left(a-b+1\right)\)

13 tháng 8 2019

\(5\left(a+b\right)^2-\left(a+b\right)\left(a-b\right)\)

\(=\left(a+b\right)\left[5\left(a+b\right)-\left(a-b\right)\right]\)

\(=\left(a+b\right)\left[5a+5b-a+b\right]\)

\(=\left(a+b\right)\left[4a+6b\right]\)

AH
Akai Haruma
Giáo viên
9 tháng 8 2018

a)

\((x+y+z)^3-x^3-y^3-z^3\)

\(=(x+y+z-x)[(x+y+z)^2+x(x+y+z)+x^2]-(y^3+z^3)\)

\(=(y+z)(x^2+y^2+z^2+2xy+2yz+2xz+x^2+xy+xz+x^2)-(y+z)(y^2-yz+z^2)\)

\(=(y+z)(x^2+y^2+z^2+2xy+2yz+2xz+x^2+xy+xz+x^2-y^2+yz-z^2)\)

\(=(y+z)(3x^2+3xy+3yz+3xz)\)

\(=3(y+z)(x^2+xy+yz+xz)\)

\(=3(y+z)[x(x+y)+z(y+x)]=3(y+z)(x+z)(y+x)\)

AH
Akai Haruma
Giáo viên
9 tháng 8 2018

b)

\((b-c)^3+(c-a)^3+(a-b)^3\)

\(=(b-c)^3-[(b-c)+(a-b)]^3+(a-b)^3\)

\(=(b-c)^3-[(b-c)^3+3(b-c)^2(a-b)+3(b-c)(a-b)^2+(a-b)^3]+(a-b)^3\)

\(=-3(b-c)^2(a-b)-3(b-c)(a-b)^2\)

\(-3(b-c)(a-b)[(b-c)+(a-b)]=-3(b-c)(a-b)(a-c)\)

\(=3(a-b)(b-c)(c-a)\)

e)

\(x^3-5x^2y-14xy^2\)

\(=x(x^2-5xy-14y^2)\)

\(=x[x^2+2xy-7xy-14y^2]\)

\(=x[x(x+2y)-7y(x+2y)]\)

\(=x(x-7y)(x+2y)\)

9 tháng 10 2018

Sửa đề chút :

\(\left(x+y+z\right)^3-x^3-y^3-z^3\)

\(=\left[\left(x+y\right)+z\right]^3-x^3-y^3-z^3\)

\(=\left(x+y\right)^3+3\left(x+y\right)^2z+3\left(x+y\right)z^2+z^3-x^3-y^3-z^3\)

\(=x^3+3x^2y+3xy^2+y^3+3\left(x+y\right)^2z+3\left(x+y\right)z^2-x^3-y^3\)

\(=3x^2y+3xy^2+3\left(x+y\right)^2z+3\left(x+y\right)z^2\)

\(=3xy\left(x+y\right)+3\left(x+y\right)^2z+3\left(x+y\right)z^2\)

\(=3\left(x+y\right)\left(xy+xz+yz+z^2\right)\)

\(=3\left(x+y\right)\left[x\left(y+z\right)+z\left(y+z\right)\right]\)

\(=3\left(x+y\right)\left(y+z\right)\left(z+x\right)\)

9 tháng 10 2018

c) x+ y3 + z3 - 3xyz

= x3 + 3x2y + 3xy2 + y3 + z3 - 3xyz - 3x2y - 3xy2

= (x+y)3 + z3  - 3xy.( z+x+y)

= (x+y+z).[(x+y)2 - (x+y).z + z2 ] - 3xy.(x+y+z)

= (x+y+z). ( x2 + 2xy + y2 - xz - yz + z2 - 3xy)

= (x+y+z) .(x2 + y2 + z2 - xy - xz -yz)

e) (a+b-c)2 - (a-c)2 - 2ab + 2bc

= (a+b-c - a+c).(a+b+c+a-c) - 2b.(a-c)

= b.(2a+b) - 2b.(a-c)

= b.(2a+b - a +c)

= b.( a+b+c)

xl bn nha! mk chỉ nghĩ đk 2 câu thoy, 1 câu bn kia làm r! 2 câu còn lại bn đợi người tiếp theo làm nhé