Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì 2 đoạn thẳng \(AB\) và \(CD\) cắt nhau tại trung điểm O của mỗi đoạn (gt).
=> \(O\) là trung điểm của \(AB\) và \(CD.\)
=> \(\left\{{}\begin{matrix}OA=OB\\OC=OD\end{matrix}\right.\) (tính chất trung điểm).
Xét 2 \(\Delta\) \(OAC\) và \(OBD\) có:
\(OA=OB\left(cmt\right)\)
\(\widehat{AOC}=\widehat{BOD}\) (vì 2 góc đối đỉnh)
\(OC=OD\left(cmt\right)\)
=> \(\Delta OAC=\Delta OBD\left(c-g-c\right)\)
=> \(AC=BD\) (2 cạnh tương ứng).
=> \(\widehat{OAC}=\widehat{OBD}\) (2 góc tương ứng).
Mà 2 góc này nằm ở vị trí so le trong.
=> \(AC\) // \(BD.\)
b) Xét 2 \(\Delta\) \(OAD\) và \(OBC\) có:
\(OA=OB\left(cmt\right)\)
\(\widehat{AOD}=\widehat{BOC}\) (vì 2 góc đối đỉnh)
\(OD=OC\left(cmt\right)\)
=> \(\Delta OAD=\Delta OBC\left(c-g-c\right)\)
=> \(AD=BC\) (2 cạnh tương ứng).
=> \(\widehat{OAD}=\widehat{OBC}\) (2 góc tương ứng).
Mà 2 góc này nằm ở vị trí so le trong.
=> \(AD\) // \(BC.\)
c) Ta có: \(\widehat{COM}=\widehat{DON}\) (vì 2 góc đối đỉnh).
Mà \(\widehat{AOD}+\widehat{AOM}+\widehat{COM}=180^0\left(gt\right)\)
=> \(\widehat{AOD}+\widehat{AOM}+\widehat{DON}=180^0\)
=> \(\widehat{MON}=180^0.\)
=> 3 điểm \(M,O,N\) thẳng hàng (đpcm).
Chúc bạn học tốt!
a) Xét tam giác AHB và tam giác AHD có:
AB=AD(gt)
AH chung
BH=HD(H là trung điểm BD)
=> ΔAHB=ΔAHD(c.c.c)
b) Ta có: AB=AD
=> Tam giác ABD cân tại A
Mà AH là trung tuyến(H là trung điểm BD)
=> AH là đường trung trực của BD
a: Xét ΔAMC và ΔDMB có
MA=MD
\(\widehat{AMC}=\widehat{DMB}\)
MC=MB
Do đó: ΔAMC=ΔDMB
Suy ra: AC=DB và \(\widehat{MAC}=\widehat{MDB}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AC//DB
hay DB\(\perp\)AB
Xét ΔCAB vuông tại A và ΔDBA vuông tại D có
BA chung
CA=DB
Do đó: ΔCAB=ΔDBA
Suy ra: CB=DA
b: Xét ΔABC vuông tại A có
\(BC^2=AB^2+AC^2\)
hay BC=10(cm)
Suy ra: AD=10cm
A B C I M D H K
a) Xét \(\Delta AIB\),\(\Delta AIC\) có: ^BAI=^CAI (gt) , AI chung, AB=AC
=>\(\Delta AIB\)=\(\Delta AIC\)(c.g.c)
b) Xét\(\Delta AMD\), \(\Delta CMB\) có: ^AMD=^BMC (2 goc đối điỉnh)
AM=MC(gt) ; BM=MD(gt)
=>\(\Delta AMD\)=\(\Delta CMB\)(c.g.c)
=> AD=BC ; BD=AC
Xét \(\Delta ABC\) => AB+BC>AC ( bđt trong tam giác)
mà AC=BD => AB+BC>BD
c) xét \(\Delta AHM\),\(\Delta CKM\) (^AHM=^CKM=90o) có: AM=MC(gt) , ^AMH=^CMK ( 2gocs dd)
=>\(\Delta AHM\)=\(\Delta CKM\)
=>AH=CK
=>AH+CK=2AH
Xét \(\Delta AHM\) vuông tại H:=> ^AMH< ^AHM
=> AM>AH
=>2AM>2AH
mà 2AM=AC(gt) 2AH= AH +CK
=>AC>AH+CK
Ai đó giúp mình với! Mình đang cần gấp!:( Các bạn vẽ hình lun giúp mình nha! Cảm ơn các bạn nhìu!:)
Do tam giác ABC có
AB = 3 , AC = 4 , BC = 5
Suy ra ta được
(3*3)+(4*4)=5*5 ( định lý pi ta go)
9 + 16 = 25
Theo định lý py ta go thì tam giác abc vuông tại A