K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2016

ra vừa thôi mà mấy bài đó sử dùng hằng đẳng thức là ra mà cần gì phải hỏi

a. x2-x+1= x2-2.x.1/2+12=(x-1)2\(\ge\)0

b. \(x^2+x+2=x^2+2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

c. \(-x^2+x-3=-\left(x^2-x+3\right)=-\left(x^2-2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{11}{4}\right)=-\left[\left(x-\frac{1}{2}\right)^2+\frac{11}{4}\right]=-\left(x-\frac{1}{2}\right)^2-\frac{11}{4}\ge-\frac{11}{4}\)

\(a;x^2-3x+3=x^2-2\cdot\frac{3}{2}x+\frac{9}{4}-\frac{9}{4}+3\)

                 \(=\left(x-\frac{3}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\Leftrightarrow x^2-3x+3>0\forall x\)

15 tháng 8 2019

a, TA CO X -3X+3=X2-3X+(3/2)2 +3/4=(X-3/2)2+3/4 >0

TUONG TU

15 tháng 8 2018

a) \(x^2-x+1=x^2-\frac{1}{2}.x.2+\frac{1}{4}+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)

Vì \(\left(x-\frac{1}{2}\right)^2\ge0\left(\forall x\right)\) và \(\frac{3}{4}>0\)

Nên \(x^2-x+1\) luôn dương với mọi giá trị của x

b) \(x^2+x+2=x^2+2.x.\frac{1}{2}+\frac{1}{4}+\frac{7}{4}=\left(x+\frac{1}{2}\right)^2+\frac{7}{4}\ge\frac{7}{4}>0\)

Nên x2 + x + 2 luôn dương với mọi giá trị của x

c) \(-a^2+a-3=-\left(a^2-a+3\right)=-\left(a^2-2.a.\frac{1}{2}+\frac{1}{4}\right)-\frac{11}{4}\)

                                             \(=-\left(a-\frac{1}{2}\right)^2+\frac{-11}{4}\)

Vì \(\left(a-\frac{1}{2}\right)^2\ge0\left(\forall a\right)\Rightarrow-\left(a-\frac{1}{2}\right)^2< 0\left(\forall a\right)\)

Và \(\frac{-11}{4}< 0\)

Nên -a2 + a - 3 luôn âm với mọi giá trị của a

15 tháng 8 2018

a) x^2 - x+1

=x^2 - 2.x.1/2 + (1/2)^2-(1/2)^2 +1

=(x-1/2)^2 - 1/4 +1

=(x-1/2)^2 + 3/4

ta thấy ; (x-1/2)^2 lớn hơn hoặc bằng 0 với mọi x thuộc R

     (=)   (x-1/2)^2 + 3/4 >0 với mọi x thuộc R

hay x^2 -x + 1 luôn dương

b) x^2 + x +2

=x^2 + 2.x.1/2 + ( 1/2)^2 -(1/2)^2 +2

= ( x+1/2)^2 -1/4 +2

= (x+1/2)^2 +7/4

ta thấy : (x + 1/2)^2 lớn hơn hoặc bằng 0 với mọi x thuộc R

       (=) (x + 1/2)^2  + 7/4 > 0 với mọi x thuộc R

hay x^2 + x + 2 luôn dương

c)-a^2 + a -3 

= -( a^2 -a +3 )

= - (a^2-2a1/2+<1/2>^2 -<1/2>^2 + 3 )

= - ( <a-1/2>^2 -1/4 +3)

= - ( <a-1/2>^2 +11/4) 

= -(a-1/2)^2 -11/4

ta thấy : - (a-1/2)^2 nhỏ hơn hoặc bằng 0 với mọi x thuộc R 

          (=) -(a-1/2)^2 - 11/4 < 0 với mọi x thuộc R

hay -a^2 + a -3 luôn âm

d) xin lỗi mình chưa giải kịp 

24 tháng 6 2017

Phân thức đại số

\(x^2-4x+5=x^2-4x+4+1=\left(x-2\right)^2+1\ge1>0\) với mọi giá trị của \(x\) nên giá trị của biểu thức luôn luôn âm với mọi giá trị khác 0 và khác -3 của \(x\)

18 tháng 7 2016

a)\(x^2-8x+19=x^2-2.x.4+16+3=\left(x+4\right)^2+3\)

Vì \(\left(x+4\right)^2\ge0\Rightarrow\left(x+4\right)^2+3\ge3\Rightarrow x^2-8x+19\ge3\)

Vậy x2-8x+19 luôn nhận giá trị dương

mấy câu kia làm tương tự

9 tháng 7 2017

Ta có : 9x2 - 6x + 5

= (3x)2 - 6x + 1 + 4

= (3x - 1)2 + 4

Mà : (3x - 1)\(\ge0\forall x\)

Nên : (3x - 1)2 + 4 \(\ge4\forall x\)

Suy ra : (3x - 1)2 + 4 \(>0\forall x\)

Vậy biểu thức sau luôn luôn dương 

9 tháng 7 2017

thanks bạn nha ^^

\(x^2+x+1=x^2+2.x.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\)

\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)( luôn dương ) (1 )

\(x^2-x+1=x^2-2.x.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\)

\(=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)( luôn dương ) ( 2 )

Từ ( 1 ) và  ( 2 ) => \(\frac{x^2+x+1}{x^2-x+1}\ge\frac{3}{4}:\frac{3}{4}\ge1\)( luôn dương ) ( đpcm )

\(\frac{x^2+x+1}{x^2-x+1}\)

=\(\frac{x^2+2.\frac{1}{2}.x+\frac{1}{4}-\frac{1}{4}+1}{x^2-2.\frac{1}{2}.x+\frac{1}{4}-\frac{1}{4}+1}\)

=\(\frac{\left(x+1\right)^2+\frac{3}{4}}{\left(x-1\right)^2+\frac{3}{4}}\)vì tử số và mẫu số luôn dương => với mọi x luôn dương