Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
M P N D E H K
a) Xét tam giác PMD và tam giác EMD, ta có :
PMD = EMD ( gt )
MD chung
MP = ME ( gt )
=> Tam giác PMD bằng Tam giác EMD ( c . g . c )
b) Xét tam giác MPK và tam giác MEK, ta có :
PMD = EMD ( gt )
MK chung
MP = ME ( gt )
=> Tam giác MPK = Tam giác MEK ( c . g .c )
=> KP = KE ( 1 )
=> MKE = MKP = 900 ( 2 )
Từ 1 và 2 suy ra MDlaf đường trung trực đoạn thẳng PE
c) Ta có MDN = MDH { ( 1800 - PDE ) + MDE }
Xét tam giác MHD và tam giác MND, ta có :
HMD = NMD ( gt )
MD chung
MDN = MDH ( gt )
=> Tam giác MHD bằng tam giác MND ( g . c .g )
=> HD = DN
d)
![](https://rs.olm.vn/images/avt/0.png?1311)
a/ Xét \(\Delta ABD\) và \(\Delta KBD\)
AB=BK (gt); BD chung
\(\widehat{ABD}=\widehat{KBD}\) (gt)
\(\Rightarrow\Delta ABD=\Delta KBD\left(c.g.c\right)\Rightarrow AD=DK\)
b/
\(\Delta ABD=\Delta KBD\Rightarrow\widehat{BAC}=\widehat{BKD}=90^o\Rightarrow DK\perp BC\)
\(AH\perp BC\left(gt\right)\)
=> AH//DK (cùng vuông góc với BC)
c/
Gọi M' là giao của BD với CE. Xét \(\Delta BCE\) có
\(EK\perp BC,CA\perp BE\)=> D là trực tâm của \(\Delta BCE\Rightarrow BM\perp CE\) (trong tam giác 3 đường cao đồng quy tại 1 điểm gọi là trực tâm của tam giác)
Mà BM là phân giác của \(\widehat{ABC}\Rightarrow\Delta BCE\) cân tại B (trong tam giác đường cao đồng thời là đường phân giác thì tg đó là tg cân)
=> BM' là đường trung tuyến (trong tg cân đường cao xp từ đỉnh đồng thời là đường trung tuyến của tam giác)
=> M' là trung điểm của CE, mà M cũng là trung điểm của CE => M trùng M' => B, D, M thẳng hàng
![](https://rs.olm.vn/images/avt/0.png?1311)
1: S=8⋅62=24(cm2)S=8⋅62=24(cm2)
2: Xét ΔABC vuông tại A có AH là đường cao
nên AC2=HC⋅BCAC2=HC⋅BC
3: Xét ΔAHB vuông tại H có HM là đường cao
nên AM⋅AB=AH2(1)AM⋅AB=AH2(1)
Xét ΔAHC vuông tại H có HN là đường cao
nên AN⋅AC=AH2(2)AN⋅AC=AH2(2)
Từ (1) và (2) suy ra AM⋅AB=AN⋅ACAM⋅AB=AN⋅AC
=>AM/AC=AN/AB
Xét ΔAMN vuông tại A và ΔACB vuông tại A có
AM/AC=AN/AB
Do đó: ΔAMN∼ΔACB
Mọi người ơi giúp mình với,mình sắp phải nộp bài rồi.Mong mọi người giúp đỡ ạ.
![](https://rs.olm.vn/images/avt/0.png?1311)
a)Xét \(\Delta ABI\)vuông tại A và \(\Delta KBI\)vuông tại K ,có:
\(\widehat{ABI}=\widehat{KBI}\)(do BI là phân giác của \(\widehat{ABC}\))
\(BI:chung\)
\(\Rightarrow\Delta ABI=\Delta KBI\left(ch.gn\right)\)
b)Vì \(\Delta ABI=\Delta KBI\left(ch.gn\right)\)
\(\Rightarrow\hept{\begin{cases}AB=KB\\AI=BI\end{cases}}\)(2 cạnh tương ứng)
\(\Rightarrow B,I\)thuộc đường trung trực của AK
hay BI là đường trung trực của AK
c)Vì BI là phân giác của \(\widehat{ABC}\)
\(\Rightarrow\)\(\widehat{ABI}=\widehat{KBI}=\frac{\widehat{ABC}}{2}=\frac{60^0}{2}=30^0=\widehat{ACB}\)(do \(\Delta ABC\)vuông tại A)
\(\Rightarrow\Delta BIC\)cân tại I
mà IK là đường cao
\(\Rightarrow IK\)là đường trung tuyến của \(\Delta BIC\)
\(\Rightarrowđpcm\)
//Sorry bạn nha .Hôm qua chỗ mình mưa to quá lại còn có sấm sét nữa nên mình không giải tiếp được cho bạn .
c)Vì \(\Delta BIC\)cân tại I nên IB=IC
Xét \(\Delta ABI\)vuông tại A ,có:
\(IB\)là cạnh huyền
\(\Rightarrow AB< IB=IC\)
d)Vì \(\Delta ABC\)vuông tại A \(\Rightarrow AB\perp AC\)
Xét \(\Delta BIC\),có:
BA,IK,CF là các đường cao
\(\Rightarrow BA,IK,CF\)đồng quy tại trực tâm của \(\Delta BIC\)
a: Xét ΔDNP và ΔEPN có
DN=EP
\(\widehat{DNP}=\widehat{EPN}\)
NP chung
Do đó: ΔDNP=ΔEPN
b: ΔDNP=ΔEPN
=>DP=EN
Ta có: MD+DN=MN
ME+EP=MP
mà DN=EP và MN=MP
nên MD=ME
Xét ΔMEN và ΔMDP có
ME=MD
EN=DP
MN=MP
Do đó: ΔMEN=ΔMDP
c: Ta có: ΔDNP=ΔEPN
=>\(\widehat{DPN}=\widehat{ENP}\)
=>\(\widehat{KNP}=\widehat{KPN}\)
=>ΔKNP cân tại K
d: Xét ΔMNK và ΔMPK có
MN=MP
NK=PK
MK chung
Do đó: ΔMNK=ΔMPK
=>\(\widehat{NMK}=\widehat{PMK}\)
=>MK là phân giác của góc NMP
e: Ta có: ΔMNP cân tại M
mà MH là đường trung tuyến
nên MH là phân giác của góc NMP
mà MK là phân giác của góc NMP
nên M,H,K thẳng hàng
f: Xét ΔMNP có \(\dfrac{MD}{MN}=\dfrac{ME}{MP}\)
nên DE//NP