Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ∆ ABK và ∆IBK có:
+\(\widehat{ABK}=\widehat{KBI}\)(gt)
+BK chung
+\(\widehat{BAK}=\widehat{BIK}\left(=90^o\right)\)
\(\Rightarrow\)∆ABK=∆IBK(ch-gnhon)
b) Ta có: \(\left\{{}\begin{matrix}KI\perp BC\left(gt\right)\\AD\perp BC\left(gt\right)\end{matrix}\right.\)
Do đó: KI//AD
\(\Rightarrow\widehat{DAI}=\widehat{AIK}\)(2 góc SLT) (1)
Ta có ∆ABK=∆IBK(cmt)
nên KA=KI (2 cạnh tương ứng)
Xét ∆KAI cân tại K
\(\Rightarrow\widehat{KAI}=\widehat{KIA}\)(2 góc đáy) (2)
Từ (1) và (2)\(\Rightarrow\widehat{DAI}=\widehat{KAI}\Leftrightarrow\widehat{DAI}=\widehat{IAC}\)
=> AI là tia pgiac(đpcm)
C1 :
Hình : tự vẽ
a )Vì CA=CB ( đề bài cho ) => tam giác ABC cân tại C
mà CI vuông góc vs AB => CI là đường cao của tam giác ABC
=> CI cũng là đường trung tuyến của tam giác ABC ( t/c tam giác cân )
=> IA=IB (đpcm)
C1 :
b) Có IA=IB ( cm phần a )
mà IA+IB = AB
IA + IA = 12 (cm)
=> IA = \(\frac{12}{2}=6\left(cm\right)\)
Xét tam giác vuông CIA có : CI2 + IA2 = CA2 ( Đ/l Py-ta -go )
CI2 + 62 = 102
CI2 = 102 - 62 = 64
=> CI = \(\sqrt{64}=8\left(cm\right)\)
Vậy CI ( hay IC ) = 8cm
Cho tam giác ABC vuông tại A, có AB < AC. Kẻ AH vuông góc với BC (H thuộc BC).
a) Chứng minh: HB < AH < HC.
b) Tia phân giác góc BAH cắt BC tại D. Qua C kẻ đường thẳng vuông góc với AD và cắt AD tại I.
Chứng minh: CI là tia phân giác của góc ACB.
c) Tia phân giác góc ADC cắt CI tại K, từ K vẽ KE vuông góc với BC (K thuộc BC).
Chứng minh: ID + IC > KE+ DC.
Câu hỏi tương tự Đọc thêm
lm cho mk câu d là đc rồi nha