Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: Giải: Xét tam giác ACD có F,G lần lượt là trung điểm AC,DC nên FG là đường trung bình
\(\Rightarrow\)\(FG//AD\)
C/m tương tự đc \(EH//AD; GH//EF//BC\)
\(\Rightarrow EFGH\) là hình bình hành
a/Để EFGH là hình chữ nhật thì góc \(FGH=90^o\)
\(\Rightarrow góc HGD+góc FGC=90^o\)
Mà góc HGD=góc BCD;góc FGC= góc ADC ( góc đồng vị = nhau)
\(\Rightarrow\) góc BCD+góc ADC=\(90^o\)
\(\Rightarrow\)Để EFGH là hình chữ nhật thì tứ giác ABCD cần có góc BCD+góc ADC=\(90^o\)
b/Để EFGH là hình thoi thì FG=HG
Mà FG=1/2AD; HG=1/2BC
\(\Rightarrow\)AD=BC
\(\Rightarrow\)Để EFGH là hình thoi thì tứ giác ABCD có AD=BC
c/ để EFGH là hình vuông thì EFGH phải vừa là hình chữ nhật vừa là hình thoi\(\Rightarrow \)ABCD phải có đủ cả 2 điều kiện trên
A B C D E M F N 1 2 3
a, Ta có: CE _|_ AB (gt)
MN _|_ CE (gt)
=> MN // AB
Mà AB // CD (tính chất HBH)
=> MN // CD
=> MNCD là HBH (1)
Lại có: BC = 2AB
Mà AD = BC (t/c HBH), AB = CD (t/c HBH)
=> AD = 2CD
=> \(CD=\frac{AD}{2}\)
Mà \(MD=\frac{AD}{2}\) (M là trung điểm của AD)
=> MD = CD (2)
Từ (1) và (2) => MNCD là hình thoi
b, Vì MNCD là hình thoi => MD = CN
AD = BC (t/c hình HBH)
=>\(CN=\frac{BC}{2}\) hay CN = BN
Xét t/g BCE có: CN = BN (cmt), BE // NF (câu a)
=> EF = FC
=> MF là đường trung tuyến của t.g CME
Mà MF cũng là đường cao của t/g CME
=> t/g CME cân tại M
c, Vì AB // MN (câu a) => góc BAD = góc NMD (đồng vị) (3)
Ta có: góc NMD = góc M1 + góc M2
Vì t/g CME cân tại M (câu b) => MF là tia p/g của góc CME => góc M2 = góc M3
MNCD là hình thoi (câu a) => góc M1 = M2
Do đó góc M1 = góc M2 = góc M3
=>góc NMD = \(2\widehat{M_3}\) (4)
Mà góc M3 = góc AEM (AE//MF;so le trong) (5)
Từ (3),(4),(5) => góc BAD = 2 góc AEM
P/s: hình k đc chuẩn
Xét \(\Delta\)ABC có: D là trung điểm của AB
M là trung điểm của BC
\(\Rightarrow\)DM là đường trung bình của \(\Delta ABC\)
\(\Rightarrow DM\)//AC hay DM//AE
Ta có : M là trung điểm của BC
E là trung điểm của CA
\(\Rightarrow\)ME là đường trung bình của \(\Delta\)ABC
\(\Rightarrow\)ME//AB hay ME//AD
Xét tứ giác ADME có: DM//AE(cmt)
ME//AD(cmt)
\(\Rightarrow\)ADME là hình bình hành
Nếu \(\Delta\)ABC cân tại A có đường trung tuyến AM
\(\Rightarrow\)AM đồng thời là tia phân giác của \(\widehat{A}\)
Xét hình bình hành ADME có đường chéo AM là tia phân giác của \(\widehat{A}\)(cmt)
\(\Rightarrow\)ADME là hình thoi
Nếu \(\Delta\)ABC vuông tại A
\(\Rightarrow\widehat{A}=90^0\)
Xét hình bình hành ADME có \(\widehat{A}=90^0\)(cmt)
\(\Rightarrow\)ADME là hình chữ nhật
d/ Xét \(\Delta ABC\) vuông tại A, đường trung tuyến AM
\(\Rightarrow AM=\frac{1}{2}BC\)(Trong tam giác vuông, đường trung tuyến ứng với cạnh huyền thì bằng 1/2 cạnh huyền)
Áp dụng định lí Py-ta-go vào tam giác ABC vuông tại A ta có:
BC2=AB2+AC2
\(\Leftrightarrow BC=\sqrt{AB^2+AC^2}\)
\(\Leftrightarrow BC=\sqrt{6^2+8^2}\)
\(\Leftrightarrow BC=10\left(cm\right)\)
Khi đó:AM=\(\frac{1}{2}.BC=\frac{1}{2}.10=5\left(cm\right)\)
Vậy trong trường hợp tam giác ABC vuông tại A, AB=6cm và AC=8cm thì AM=5cm
Xét tứ giác ECDF ta có:
\(EC//DF\left(BC//AD\right)\)
\(EC=\frac{1}{2}.BC;FD=\frac{1}{2}.AD\)
Mà: \(BC=AD\Rightarrow EC=FD\)
\(\Rightarrow ECDF\) là hình bình hành
Ta có: \(EC=CD=\frac{1}{2}.BC\)
\(\Rightarrow ECDF\) là hình thoi
\(BE//AD\Rightarrow ABED\) là hình thang bởi vì theo phần a), \(ECDF\) là hình thoi
\(\Rightarrow DE\) là phân giác của \(\widehat{CDF}\)
Mà: \(\widehat{BAD}=60^o\)
\(\Rightarrow\widehat{ADC}=120^o\) (Hai góc này kề bù)
\(\Rightarrow\widehat{ADE}=\frac{1}{2}.\widehat{ADC}=60^o=\widehat{BAD}\)
\(\Rightarrow ABED\) là hình thang cân
Ý cuối cùng mình không biết làm.
E C F B D A 60 độ 60 độ Yen Nhi