Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\dfrac{EB}{FC}=\dfrac{BH^2}{AB}:\dfrac{CH^2}{AC}\)
\(=\dfrac{BH^2}{CH^2}\cdot\dfrac{AC}{AB}\)
\(=\left(\dfrac{AB}{AC}\right)^4\cdot\dfrac{AC}{AB}=\dfrac{AB^3}{AC^3}\)
b: \(BC\cdot BE\cdot CF\)
\(=BC\cdot\dfrac{BH^2}{AB}\cdot\dfrac{CH^2}{AC}\)
\(=\dfrac{AB\cdot AC}{AH}\cdot\dfrac{AH^4}{AB\cdot AC}=AH^3\)
A B C H E F Hinh ve chi mang tinh chat minh hoa
Ap dung he thuc luong trong tam giac vuong \(ABC;ABH;ACH\) ta co:
\(BE\cdot BA=BH^2;CF\cdot CA=CH^2;BH.HC=AH^2\)
\(\Rightarrow CF\cdot CA\cdot BE\cdot BA=\left(CH\cdot BH\right)^2=AH^4\)
Mat khac:\(AB\cdot AC=AH\cdot BC\) . Khi do:
\(CF\cdot BE\cdot AH\cdot BC=AH^4\Rightarrow CF\cdot BE\cdot BC=AH^3\)
Vay ta co dpcm
b: \(BE\cdot CF\cdot BC\)
\(=\dfrac{BH^2}{AB}\cdot\dfrac{CH^2}{AC}\cdot BC\)
\(=\dfrac{AH^4}{AH}=AH^3\)
c: \(\dfrac{BE}{CF}=\dfrac{BH^2}{AB}:\dfrac{CH^2}{AC}=\dfrac{BH^2}{CH^2}\cdot\dfrac{AC}{AB}=\left(\dfrac{AB}{AC}\right)^3\)
A B C H 12 20 E
a, Xét tam giác ABC vuông tại A, đường cao AH
Áp dụng định lí Pytago cho tam giác ABC vuông tại A
\(AB^2+AC^2=BC^2\Rightarrow AC^2=BC^2-AB^2=400-144=256\Leftrightarrow AC=16\)cm
* Áp dụng hệ thức : \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{144}+\frac{1}{256}=\frac{256+144}{144.256}\)
\(\Rightarrow400AH^2=36864\Leftrightarrow AH^2=\frac{36864}{400}=\frac{2304}{25}\Leftrightarrow AH=\frac{48}{5}\)cm
b, * Áp dụng hệ thức : \(AH^2=AE.AB\)(1)
Áp dụng định lí Pytago cho tam giác AHC vuông tại H
\(AH^2+HC^2=AC^2\Rightarrow AH^2=AC^2-HC^2\) (2)
Từ (1) ; (2) suy ra : \(AE.AB=AC^2-HC^2\)( đpcm )
Lời giải:
a) Đề sai. Bạn xem lại đề.
b)
Xét tam giác $BEH$ và $BHA$ có:
\(\widehat{B}\) chung
\(\widehat{BEH}=\widehat{BHA}(=90^0)\)
\(\Rightarrow \triangle BEH\sim \triangle BHA(g.g)\Rightarrow \frac{BE}{BH}=\frac{BH}{BA}\Rightarrow BE=\frac{BH^2}{BA}(1)\)
Tương tự: \(\triangle CFH\sim \triangle CHA(g.g)\Rightarrow \frac{CF}{CH}=\frac{CH}{CA}\Rightarrow CF=\frac{CH^2}{CA}(2)\)
Xét tam giác $BHA$ và $BAC$ có:
\(\widehat{B}\) chung
\(\widehat{BHA}=\widehat{BAC}(=90^0)\)
\(\Rightarrow \triangle BHA\sim \triangle BAC(g.g)\)
\(\Rightarrow \frac{BH}{BA}=\frac{BA}{BC}(3)\)
Tương tự: \(\triangle CHA\sim \triangle CAB(g.g)\Rightarrow \frac{CH}{CA}=\frac{CA}{CB}(4)\)
Từ \((3);(4)\Rightarrow \frac{BH}{CH}=\left(\frac{BA}{CA}\right)^2(5)\)
Từ \((1);(2);(5)\Rightarrow \frac{EB}{CF}=(\frac{BH}{CH})^2.\frac{AC}{AB}=(\frac{BA}{CA})^4.\frac{AC}{AB}=\left(\frac{AB}{AC}\right)^3\)
c)
Xét tam giác $BHA$ và $AHC$ có:
\(\widehat{BHA}=\widehat{AHC}=90^0\)
\(\widehat{HBA}=\widehat{HAC}(=90^0-\widehat{BAH})\)
\(\Rightarrow \triangle BHA\sim \triangle AHC(g.g)\Rightarrow \frac{BH}{HA}=\frac{AH}{HC}\Rightarrow AH^2=BH.CH\)
Do đó, kết hợp với các kết quả thu được từ phần b ta có:
\(BC.BE.CF=BC.\frac{BH^2}{BA}.\frac{CH^2}{CA}=BC.\frac{(BH.CH)^2}{AB.AC}=BC.\frac{AH^4}{AB.AC}\)
\(=\frac{BC.AH}{AB.AC}.AH^3=\frac{2S_{ABC}}{2S_{ABC}}.AH^3=AH^3\)
Ta có đpcm.
a) Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC(gt)
nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\)(Định lí 1 về hệ thức lượng trong tam giác vuông)
\(\Leftrightarrow\frac{AB^2}{AC^2}=\frac{BH\cdot BC}{CH\cdot BC}=\frac{BH}{CH}\)
Xét ΔAHB vuông tại H có HE là đường cao ứng với cạnh huyền AB(gt)
nên \(HB^2=EB\cdot AB\)(Định lí 1 về hệ thức lượng trong tam giác vuông)
\(\Leftrightarrow EB=\frac{HB^2}{AB}\)
Xét ΔAHC vuông tại H có HF là đường cao ứng với cạnh huyền AC(gt)
nên \(HC^2=CF\cdot AC\)(Định lí 1 về hệ thức lượng trong tam giác vuông)
hay \(CF=\frac{HC^2}{AC}\)
Ta có: \(\frac{EB}{CF}=\frac{HB^2}{AB}:\frac{HC^2}{AC}=\frac{HB^2}{AB}\cdot\frac{AC}{HC^2}=\left(\frac{BH}{CH}\right)^2\cdot\frac{AC}{AB}\)
\(=\left(\frac{AB^2}{AC^2}\right)^2\cdot\frac{AC}{AB}\)
\(=\frac{AB^4}{AC^4}\cdot\frac{AC}{AB}=\frac{AB^3}{AC^3}\)(đpcm)
a: \(\dfrac{EB}{FC}=\dfrac{BH^2}{BA}:\dfrac{CH^2}{CA}\)
\(=\dfrac{BH^2}{AB}\cdot\dfrac{AC}{CH^2}\)
\(=\dfrac{AB^4}{AC^4}\cdot\dfrac{AC}{AB}=\dfrac{AB^3}{AC^3}\)
b: \(BC\cdot BE\cdot CF\)
\(=BC\cdot\dfrac{BH^2}{AB}\cdot\dfrac{CH^2}{AC}\)
\(=\dfrac{BC}{AH\cdot BC}\cdot AH^4=\dfrac{AH^4}{AH}=AH^3\)