Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) M chia hết cho 7 là rõ ràng vì các số hạng của M đều là lũy thừa của 7
\(M=\left(7+7^2\right)+\left(7^3+7^4\right)+...+\left(7^{59}+7^{60}\right)\)
\(=7\left(1+7\right)+7^3\left(1+7\right)+...+7^{59}\left(1+7\right)\)
\(=7.8+7^3.8+...+7^{59}.8\)
\(=\left(7+7^3+...+7^{59}\right).8\)
=> M cũng chia hết cho 9
Làm tương tự, để chứng minh M chia hết cho 50 thì ta nhóm số thứ nhất với số thứ ba,, số thứ hai với số thứ tư, số thứ ba với số thứ năm, v.v.
\(M=\left(7+7^3\right)+\left(7^2+7^4\right)+...+\left(7^{57}+7^{59}\right)+\left(7^{58}+7^{60}\right)\)
\(=7\left(1+7^2\right)+7^2\left(1+7^2\right)+...+7^{57}\left(1+7^2\right)+7^{58}\left(1+7^2\right)\)
\(=7.50+7^2.50+...+7^{57}.50+7^{58}.50\)
\(=\left(7+7^2+...+7^{57}+7^{58}\right).50\)
=> M cũng chia hết cho 50
b) Rút gọn M.
\(M=7+7^2+...+7^{59}+7^{60}\) (1)
=> Chia cả hai vế cho 7 ta có:
\(\frac{M}{7}=1+7+7^2+...+7^{59}\) (2)
Lấy (1) trừ cho (2) vế với vế và bỏ đi các thành phần triệt tiêu ta có:
\(M-\frac{M}{7}=7^{60}-1\)
\(\Rightarrow\frac{6}{7}M=7^{60}-1\)
\(\Rightarrow M=\frac{\left(7^{60}-1\right).7}{6}\)
a) Tổng số vé đã bán:
\(8000:20\%=40000\text{( vé)}\)
b) Số vé bán được ngày thứ nhất:
\(\dfrac{3}{5}.40000=24000\text{( vé)}\)
c) Số vé bán được trong ngày thứ hai:
\(40000.25\%=10000\text{( vé)}\)
Số vé bán được trong ngày thứ ba:
\(40000-\left(24000+10000\right)=6000\text{( vé)}\)
Tỉ số phần trăm với tổng số vé đã bán:
\(\dfrac{6000.100\%}{40000}=15\%\)
c.ơn ạ