K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2021

1, \(x^3+3^3=\left(x+3\right)\left(x^2-3x+9\right)\)

2, đề sai 

3, \(x^3+8=\left(x+2\right)\left(x^2-2x+4\right)\)

4, \(x^3-64=\left(x-4\right)\left(x^2+4x+16\right)\)

5, \(1000-y^3=\left(10-y\right)=\left(100+10y+y^2\right)\)

tương tự ... 

8, \(8x^3+27y^3=\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)\)

18 tháng 7 2021

Câu 2 đề ko sai nha bạn.

2) x2 - (\(\sqrt{y^3}\))2      ( y>0)   

= ( x -\(\sqrt{y^3}\)) ( x +\(\sqrt{y^3}\))

28 tháng 6 2018

Phân tích đa thức thành nhân tử ( phương pháp dùng hằng đẳng thức )

3) x6 - y6

= (x3)2 - (y3)2

= (x3 - y3).(x3 + y3)

8 tháng 8 2018

\(a)8x^6-27y^3=\left(2x^2\right)^3-\left(3y\right)^3=\left(2x^2-3y\right)\left(4x^4+6x^2y+9y^2\right)\)

\(b)\left(x+3\right)^3-8=\left(x+3\right)^3-2^3\)

\(=\left(x+3-2\right)\left[\left(x+3\right)^2+2\left(x+3\right)+4\right]\)

\(=\left(x+1\right)\left(x^2+6x+9+2x+6+4\right)\)

\(=\left(x+1\right)\left(x^2+8x+19\right)\)

\(c)x^6-y^6=\left(x^3\right)^2-\left(y^3\right)^2=\left(x^3+y^3\right)\left(x^3-y^3\right)\)

\(=\left(x+y\right)\left(x^2-xy+y^2\right)\left(x-y\right)\left(x^2+xy+y^2\right)\)

\(d)x^3+12x^2+48x+64=x^3+3x^2\cdot4+3x\cdot16+4^3\)

\(=\left(x+4\right)^3\)

4 tháng 10 2021

1) \(\dfrac{1}{27}+a^3=\left(\dfrac{1}{3}+a\right)\left(\dfrac{1}{9}-\dfrac{a}{3}+a^2\right)\)

2) \(=\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)\)

3) \(=\left(\dfrac{1}{2}x+2y\right)\left(\dfrac{1}{4}x-xy+4y^2\right)\)

4) \(=\left(x^2+1\right)\left(x^4-x^2+1\right)\)

5) \(=\left(x^3+1\right)\left(x^6-x^3+1\right)\)

6) \(=\left(x-4\right)\left(x^2+4x+16\right)\)

7) \(=\left(x-5\right)\left(x^2+5x+25\right)\)

8) \(=\left(2x^2-3y\right)\left(4x^4+6x^2y+9y^2\right)\)

9) \(=\left(\dfrac{1}{4}x^2-5y\right)\left(\dfrac{1}{16}x^4+\dfrac{5}{4}x^2y+25y^2\right)\)

10) \(=\left(\dfrac{1}{2}x-2\right)\left(\dfrac{1}{4}x^2+x+4\right)\)

11) \(=\left(x+2\right)^3\)

12) \(=\left(x+3\right)^3\)

 

4 tháng 10 2021

cảm ơn bạn ;-;

 

1: Ta có: \(x^{10}-4x^8+4x^6\)

\(=x^6\left(x^4-4x^2+4\right)\)

\(=x^6\left(x-2\right)^2\left(x+2\right)^2\)

2: Ta có: \(m^3+27\)

\(=\left(m+3\right)\left(m^2-3m+9\right)\)

3: Ta có: \(x^3+8\)

\(=\left(x+2\right)\left(x^2-2x+4\right)\)

4: Ta có: \(\frac{1}{27}+a^3\)

\(=\left(\frac{1}{3}+a\right)\left(\frac{1}{9}-\frac{a}{3}+a^2\right)\)

5: Ta có: \(8x^3+27y^3\)

\(=\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)\)

6: Ta có: \(\frac{1}{8}x^3+8y^3\)

\(=\left(\frac{1}{2}x+2y\right)\left(\frac{1}{4}x^2-xy+4y^2\right)\)

7: Ta có: \(8x^6-27y^3\)

\(=\left(2x^2-3y\right)\left(4x^4+6x^2y+9y^2\right)\)

8: Ta có: \(\frac{1}{8}x^3-8\)

\(=\left(\frac{1}{2}x-2\right)\left(\frac{1}{4}x^2+x+4\right)\)

9: Ta có: \(\frac{1}{64}x^6-125y^3\)

\(=\left(\frac{1}{4}x^2-5y\right)\left(\frac{1}{16}x^4+\frac{5}{4}x^2y+25y^2\right)\)

10: Ta có: \(\left(a+b\right)^3-c^3\)

\(=\left(a+b-c\right)\left[\left(a+b\right)^2+\left(a+b\right)\cdot c+c^2\right]\)

\(=\left(a+b-c\right)\left(a^2+2ab+b^2+ac+bc+c^2\right)\)

11: Ta có: \(x^3-\left(y-1\right)^3\)

\(=\left[x-\left(y-1\right)\right]\cdot\left[x^2+x\left(y-1\right)+\left(y-1\right)^2\right]\)

\(=\left(x-y+1\right)\left(x^2+xy-x+y^2-2y+1\right)\)

12: Ta có: \(x^6+1\)

\(=\left(x^2+1\right)\left(x^4-x^2+1\right)\)

30 tháng 7 2020

1) \(x^{10}-4x^8+4x^6\)

\(=x^6\left(x^4-4x^2+4\right)\)

2) \(m^3+27=m^3+3^3=\left(m+3\right)\left(m^2-3m+3^2\right)\)

3) \(x^3+8=x^3+2^3=\left(x+2\right)\left(x^2-2x+2^2\right)\)

4) \(\frac{1}{27}+a^3=\left(\frac{1}{3}\right)^3+a^3=\left(\frac{1}{3}+a\right)\left[\left(\frac{1}{3}\right)^2-\frac{1}{3}a+a^2\right]\)

5) \(8x^3+27y^3=\left(2x\right)^3+\left(3y\right)^3=\left(2x+3y\right)\left[\left(2x\right)^2-2x.3y+\left(3y\right)^2\right]=\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)\)

6) \(\frac{1}{8}x^3+8y^3=\left(\frac{1}{2}x\right)^3+\left(2y\right)^3=\left(\frac{1}{2}x+2y\right)\left[\left(\frac{1}{2}x\right)^2-\frac{1}{2}x.2y+\left(2y\right)^2\right]=\left(\frac{1}{2}x+2y\right)\left(\frac{1}{4}x^2-xy+4y^2\right)\)

8) \(\frac{1}{8}x^3-8=\left(\frac{1}{2}x\right)^3-2^3=\left(\frac{1}{2}x-2\right)\left[\left(\frac{1}{2}x\right)^2+\frac{1}{2}x.2+2^2\right]=\left(\frac{1}{2}x-2\right)\left(\frac{1}{4}x^2+x+4\right)\)

10) \(\left(a+b\right)^3-c^3=\left(a+b-c\right)\left[\left(a+b\right)^2+\left(a+b\right)c+c^2\right]=\left(a+b-c\right)\left[\left(a^2+2ab+b^2\right)+ac+bc+c^2\right]=\left(a+b-c\right)\left(a^2+2ab+b^2+ac+bc+c^2\right)\)11) \(x^3-\left(y-1\right)^3=\left(x-y+1\right)\left[x^2+x\left(y-1\right)+\left(y-1\right)^2\right]=\left(x-y+1\right)\left[x^2+xy-x+\left(y^2-2y+1\right)\right]=\left(x-y+1\right)\left(x^2+xy-x+y^2-2y+1\right)\)

P/s: Đăng ít thôi chớ bạn!

6 tháng 7 2018

MỌI NGƯỜI TRẢ LỜI GIÚP MÌNH VỚI MÌNH CẦN GẤP LẮP

22 tháng 7 2017

a) \(8-12x+6x^2-x^3\)

\(=-x^3+8+6x^2-12x\)

\(=-\left(x^3-2^3\right)+6x\left(x-2\right)\)

\(=-\left(x-2\right)\left(x^2+2x+4\right)+6x\left(x-2\right)\)

\(=\left(x-2\right)\left(-x^2-2x-4+6x\right)\)

\(=\left(x-2\right)\left(-x^2+4x-4\right)\)

\(=-\left(x-2\right)\left(x-2\right)^2\)

\(=-\left(x-2\right)^3\)

b) \(48x+64+x^3+12x^2\)

\(=x^3+3.4.x^2+3.x.4^2+4^3\)

\(=\left(x+4\right)^3\)

c) \(-9y^2+y-\dfrac{1}{27}+27y^3\)

\(=27y^3-9y^2+y-\dfrac{1}{27}\)

\(=\left(3y\right)^3-3.\left(3y\right)^2.\dfrac{1}{3}+3.3y.\left(\dfrac{1}{3}\right)^2-\left(\dfrac{1}{3}\right)^3\)

\(=\left(3y-\dfrac{1}{3}\right)^3\)

d) \(8x^3+150x-125-60x^2\)

\(=8x^3-60x^2+150x-125\)

\(=\left(2x\right)^3-3.\left(2x\right)^2.5+3.2x.5^2-5^3\)

\(=\left(2x-5\right)^3\)

22 tháng 7 2017

a, \(8-12x+6x^2-x^3=-\left(x^3-6x^2+12x-8\right)\)

\(=-\left(x^3-2x^2-4x^2+8x+4x-8\right)\)

\(=-\left(x-2\right)^3\)

b, \(48x+64+x^3+12x^2=x^3+4x^2+8x^2+32x+16x+24\)

\(=\left(x+4\right)^3\)

c, \(-9y^2+y-\dfrac{1}{7}+27y^3\)

(sai đề)

d, \(8x^3+150x-125-60x^2=8x^3-20x^2-40x^2+100x+50x-125\)

\(=4x^2\left(2x-5\right)-20x\left(2x-5\right)+25\left(2x-5\right)\)

\(=\left(2x-5\right)\left(4x^2-20x+25\right)=\left(2x-5\right)\left(2x-5\right)^2\)

\(=\left(2x-5\right)^3\)

Chúc bạn học tốt!!!

a: \(\left(x+y+z\right)^3=x^3+y^3+z^3+3\left(x+y\right)\left(y+z\right)\left(x+z\right)\)

b: \(\left(y-z+1\right)^3=y^3-z^3+1+3\left(y-z\right)\left(y+1\right)\left(-z+1\right)\)

c: \(8x^3-125=\left(2x-5\right)\left(4x^2+10x+25\right)\)

d: \(27y^3+64z^3=\left(3y+4z\right)\left(9y^2-12yz+16z^2\right)\)

 

25 tháng 10 2017

\(x^8+64\)

\(=x^8+16x^4+64-16x^4\)

\(=\left(x^4\right)^2+2.x^4.8+8^2-16x^4\)

\(=\left(x^4+8\right)^2-\left(4x^2\right)^2\)

\(=\left(x^4+8-4x^2\right)\left(x^4+8+4x^2\right)\)

2 tháng 11 2017

5x2+11x+6

=5x2+5x+6x+6

=(5x2+5x)+(6x+6)

=5x(x+1)+6(x+1)

=(x+1)(5x+6)

18 tháng 8 2018

a) \(8x^3-27y^6\)

\(=\left(2x\right)^3-\left(3y^2\right)^3\)

\(=\left(2x-3y^2\right)\left[\left(2x\right)^2+2x.3y+\left(3y\right)^2\right]\)

\(=\left(2x-3y^2\right)\left(4x^2+6xy+9y^2\right)\)

b) \(a^3b^3c^3-1\)

\(=\left(abc\right)^3-1^3\)

\(=\left(abc-1\right)\left(a^2b^2c^2+abc+1\right)\)

c) \(64x^3+\dfrac{1}{8}y^3\)

\(=\left(4x\right)^3+\left(\dfrac{1}{2}y\right)^3\)

\(=\left(4x+\dfrac{1}{2}y\right)\left[\left(4x\right)^2+4x.\dfrac{1}{2}y+\left(\dfrac{1}{2}y\right)^2\right]\)

\(=\left(4x+\dfrac{1}{2}y\right)\left(4x^2+2xy+\dfrac{1}{4}y^2\right)\)

d) \(125+y^3\)

\(=5^3+y^3\)

\(=\left(5+y\right)\left(25-5y+y^2\right)\)

e) \(a^6-b^6\)

\(=\left(a^3\right)^2-\left(b^3\right)^2\)

\(=\left(a^3-b^3\right)\left(a^3+b^3\right)\)

\(=\left(a-b\right)\left(a^2+ab+b^2\right)\left(a+b\right)\left(a^2-ab+b^2\right)\)

f) \(4x^2-9\left(3x+5\right)^2\)

\(=\left(2x\right)^2-\left[3\left(3x+5\right)\right]^2\)

\(=\left[2x-3\left(3x+5\right)\right]\left[2x+3\left(3x+5\right)\right]\)

\(=\left(2x-9x-15\right)\left(2x+9x+15\right)\)

\(=\left(-7x-15\right)\left(11x+15\right)\)