Bài 20.Cho các điểm A(-2;0) ; B(0;4) ; C(1;1) ; D(-3;2)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2024

em ko bt

 

a: A(-2;0); B(0;4); C(1;1); D(-3;2)

\(\overrightarrow{AB}=\left(2;4\right);\overrightarrow{AD}=\left(-1;2\right)\)

Vì \(\dfrac{2}{-1}\ne2=\dfrac{4}{2}\)

nên A,B,D không thẳng hàng

\(\overrightarrow{AB}=\left(2;4\right);\overrightarrow{AC}=\left(3;1\right)\)

Vì \(\dfrac{2}{3}\ne\dfrac{4}{1}\)

nên A,B,C không thẳng hàng

b: \(AB=\sqrt{2^2+4^2}=2\sqrt{5};AC=\sqrt{3^2+1^2}=\sqrt{10}\)

\(BC=\sqrt{\left(1-0\right)^2+\left(1-4\right)^2}=\sqrt{10}\)

Vì \(CA^2+CB^2=AB^2\)

nên ΔCAB vuông tại C

=>\(S_{CAB}=\dfrac{1}{2}\cdot CA\cdot CB=\dfrac{1}{2}\cdot10=5\)

14 tháng 5 2023

(a) Sửa đề điểm \(D\left(-3;-2\right)\)

Gọi phương trình đường thẳng \(AB\) là \(\left(d\right):y=ax+b\). Suy ra, giá trị hoành độ và tung độ của \(A,B\) phải thỏa mãn hàm số. Ta sẽ có : \(\left\{{}\begin{matrix}0=a.\left(-2\right)+b\\4=a.0+b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=4\end{matrix}\right.\).

Phương trình đường thẳng \(AB\) là \(\left(d\right):y=2x+4\).

Thay giá trị hoành độ và tung độ của \(D\) vào \(\left(d\right)\Rightarrow-2=2.\left(-3\right)+4\Leftrightarrow-2=-2\) (luôn đúng), do đó \(D\in\left(d\right)\Leftrightarrow A,B,D\) thẳng hàng.

Thay giá trị hoành độ và tung độ của \(C\) vào \(\left(d\right)\Rightarrow1=2.1+4\Leftrightarrow1=6\) (vô lí), do đó \(C\notin\left(d\right)\Leftrightarrow A,B,C\) không thẳng hàng.

(b) Áp dụng công thức khoảng cách giữa hai điểm có tọa độ \(\left(x_1;y_1\right),\left(x_2;y_2\right)\) là : \(d=\sqrt{\left(x_2-x_1\right)^2+\left(y_2-y_1\right)^2}\).

Ta suy ra được : \(\left\{{}\begin{matrix}AB=\sqrt{\left(x_A-x_B\right)^2+\left(y_A-y_B\right)^2}\\AC=\sqrt{\left(x_A-x_C\right)^2+\left(y_A-y_B\right)^2}\\BC=\sqrt{\left(x_B-x_C\right)^2+\left(y_B-y_C\right)^2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}AB=\sqrt{\left(-2-0\right)^2+\left(0-4\right)^2}=2\sqrt{5}\\AC=\sqrt{\left(-2-1\right)^2+\left(0-1\right)^2}=\sqrt{10}\\BC=\sqrt{\left(0-1\right)^2+\left(4-1\right)^2}=\sqrt{10}\end{matrix}\right.\).

Ta thấy : \(\left\{{}\begin{matrix}AC^2+BC^2=\left(\sqrt{10}\right)^2+\left(\sqrt{10}\right)^2=20\\AB^2=\left(2\sqrt{5}\right)^2=20\end{matrix}\right.\)

\(\Rightarrow\Delta ABC\) vuông tại \(C\Rightarrow S_{ABC}=\dfrac{1}{2}BC.AC=\dfrac{1}{2}\sqrt{10}\cdot\sqrt{10}=5\left(đvdt\right)\)

Giúp mình với . ( giải chi tiết và cái hình luôn) Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H làgiao điểm của BM và CN.a) Tính số đo các góc BMC và BNC.b) Chứng minh AH vuông góc BC.c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho gócMAB = 60độ . Kẻ dây MN vuông góc với AB...
Đọc tiếp

Giúp mình với . ( giải chi tiết và cái hình luôn)
Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H là
giao điểm của BM và CN.
a) Tính số đo các góc BMC và BNC.
b) Chứng minh AH vuông góc BC.
c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH
Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho góc
MAB = 60độ . Kẻ dây MN vuông góc với AB tại H.
a) Chứng minh AM và AN là các tiếp tuyến của đường tròn (B; BM).
b) Chứng minh MN2 = 4AH.HB .
c) Chứng minh tam giác BMN là tam giác đều và điểm O là trọng tâm của nó.
d) Tia MO cắt đường tròn (O) tại E, tia MB cắt (B) tại F. Chứng minh ba điểm N, E, F thẳng hàng.
Bài 3, Cho đường tròn (O; R) và điểm A cách O một khoảng bằng 2R, kẻ tiếp tuyến AB tới đường
tròn (B là tiếp điểm).
a) Tính số đo các góc của tam giác OAB
b) Gọi C là điểm đối xứng với B qua OA. Chứng minh điểm C nằm trên đường tròn O và AC
là tiếp tuyến của đường tròn (O).
c) AO cắt đường tròn (O) tại G. Chứng minh G là trọng tâm tam giác ABC.
Bài 4, Từ điểm A ở ngoài đường tròn (O; R) kẻ hai tiếp tuyến AB, AC (với B và C là hai tiếp điểm). Gọi H là giao điểm của OA và BC.
a) Chứng minh OA vuông góc BC và tính tích OH.OA theo R
b) Kẻ đường kính BD của đường tròn (O). Chứng minh CD // OA.
c) Gọi E là hình chiếu của C trên BD, K là giao điểm của AD và CE. Chứng minh K là trung điểm CE.

3
9 tháng 10 2017

Hình học lớp 9

21 tháng 4 2017

Tự giải đi em

21 tháng 9 2019

Bài 2:

Xét \(\Delta ABC\)có \(\widehat{A}=90^o\)\(AH\perp BC\)

\(\Rightarrow AH^2=HB.HC\)(Hệ thức lượng)

\(AH^2=25.64\)

\(AH=\sqrt{1600}=40cm\)

Xét \(\Delta ABH\)\(\widehat{H}=90^o\)

\(\Rightarrow\tan B=\frac{AH}{BH}\)\(=\frac{40}{25}=\frac{8}{5}\)

\(\Rightarrow\widehat{B}\approx58^o\)

Xét \(\Delta ABC\)có \(\widehat{A}=90^o\)

\(\Rightarrow\widehat{B}+\widehat{C}=90^o\)

\(58^o+\widehat{C}=90^o\)

\(\Rightarrow\widehat{C}\approx90^o-58^o\)

\(\widehat{C}\approx32^o\)