Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn vào loigiaihay rồi chọn toán lớp 8 rồi chọn đẳng thức đáng nhớ
dễ mà áp dụng hết hằng đẳng thức nếu bạn thuộc hằng đẳng thức mik chỉ làm mỗi bài 1 ý nha xong dựa vô mà làm
\(1a.\left(2x+3y\right)^2=\left(2x\right)^2+2.2x.3y+\left(3y\right)^2\)
\(=4y^2+12xy+9y^2\)
\(2a.x^2-6x+9\)
\(=x^2-2.x.3+3^2\)
\(=\left(x-3\right)^2\)
1)
a) \(x^2+12x+36=\left(x+6\right)^2\)
b) \(x^2-x+\dfrac{1}{4}=\left(x-\dfrac{1}{2}\right)^2\)
Tick nha
3)
a)\(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2+2\right)=15\)
\(\Leftrightarrow x^3+8-x^3-2x=15\)
\(\Leftrightarrow-2x=15-8\)
\(\Leftrightarrow-2x=7\)
\(\Rightarrow x=\dfrac{-7}{2}\)
b) \(\left(x+3\right)^3-x\left(3x+1\right)^2+\left(2x+1\right)\left(4x^2\right)-5x+1=28\)
\(\Leftrightarrow x^3+9x^2+27x+27-9x^3-6x^2-x+8x^3-10x^2+2x+4x^2-5x+1=28\)
\(\Leftrightarrow0-3x^2+23x+28=28\)
\(\Leftrightarrow-3x^2+23x=0\)
\(\Leftrightarrow-x\left(3x-23\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}-x=0\\3x-23=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{23}{3}\end{matrix}\right.\)
c) \(\left(x^2-1\right)^3-\left(x^4+x^2+1\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow x^6-3x^4+3x^2-1-x^6-2x^4-2x^2-1=0\)
\(\Leftrightarrow-5x^4+x^2-2=0\)
Đặt \(-5t^2+t-2=0\)
\(\Delta=1^2-4\left(-5\right)\left(-2\right)=-39< 0\)
\(\Rightarrow PTVN\)
BÀI 1:
\(A=\left(x-10\right)^2+103\)
Có: \(\left(x-10\right)^2\ge0\forall x\)
=> \(A\ge103\)
DẤU "=" XẢY RA <=> \(\left(x-10\right)^2=0\Rightarrow x=10\)
\(B=\left(2x+1\right)^2-6\)
Có: \(\left(2x+1\right)^2\ge0\forall x\)
=> \(B\ge-6\)
DẤU "=" XẢY RA <=> \(\left(2x+1\right)^2=0\Leftrightarrow x=-\frac{1}{2}\)
BÀI 3:
a) \(A=y^4+y^3-y^2-2y-\left(y^4+y^3+y^2-2y^2-2y-2\right)\)
\(A=y^4+y^3-y^2-2y-y^4-y^3+y^2+2y+2\)
\(A=2\)
b) \(B=\left(2x\right)^3+3^3-8x^3+2\)
\(B=29\)
Bài 1.
A = x2 - 20x + 103
A = ( x2 - 20x + 100 ) + 3
A = ( x - 10 )2 + 3 ≥ 3 ∀ x
Đẳng thức xảy ra <=> x - 10 = 0 => x = 10
=> MinA = 3 <=> x = 10
B = 4x2 + 4x - 5
B = ( 4x2 + 4x + 1 ) - 6
B = ( 2x + 1 )2 - 6 ≥ -6 ∀ x
Đẳng thức xảy ra <=> 2x + 1 = 0 => x = -1/2
=> MinB = -6 <=> x = -1/2
Bài 2.
A = -x2 + 8x - 21
A = -x2 + 8x - 16 - 5
A = -( x2 - 8x + 16 ) - 5
A = -( x - 4 )2 - 5 ≤ -5 ∀ x
Đẳng thức xảy ra <=> x - 4 = 0 => x = 4
=> MaxA = -5 <=> x = 4
B = lỗi đề :>
Bài 3.
a) y( y3 + y2 - y - 2 ) - ( y2 - 2 )( y2 + y + 1 )
= y4 + y3 - y2 - 2y - ( y4 + y3 + y2 - 2y2 - 2y - 2 )
= y4 + y3 - y2 - 2y - y4 - y3 - y2 + 2y2 + 2y + 2
= 2 ( đpcm )
b) ( 2x + 3 )( 4x2 - 6x + 9 ) - 2( 4x3 - 1 )
= ( 2x )3 + 27 - 8x3 + 2
= 8x3 + 27 - 8x3 + 2
= 29 ( đpcm )
1)Ta có A =x2 - 4x + 1
= x2 - 2.2.x + 22 - 3
= ( x - 2 )2 -3
Với x \(\inℝ\), ( x - 2 )2 \(\ge\)0
\(\Rightarrow\)(x - 2 )2 - 3 \(\ge\)-3
Vậy GTNN của A là -3
2) Ta có B = 4x2 + 4x + 11
= ( 2x )2 + 2.2x.1 + 12 +10
= ( 2x + 1 )2 +10
*tương tự câu 1*
3) *tương tự câu 2*
4) Ta có P = ( 2x + 1 )2 + ( x + 2)2
= [ ( 2x )2 + 2.2x.1 + 12 ] + [ x2 + 2.x.2 + 22 ]
= 4x2 + 4x +1 + x2 + 4x + 4
= 5x2 + 8x + 5
Với x\(\inℝ\), 5x2 \(\ge\)0
mà GTNN của 8x + 5 là 5
\(\Rightarrow\) GTNN của 5x2 + 8x + 5 là 5
Vậy GTNN của ( 2x + 1 )2 + ( x + 2)2 là 5
\(A=x^2+3x+7\)
\(=x^2+2.1,5x+2,25+4,75\)
\(=\left(x+1,5\right)^2+4,75\ge4,75\)
Vậy \(A_{min}=4,75\Leftrightarrow x=-1,5\)
\(B=2x^2-8x\)
\(=2\left(x^2-4x\right)\)
\(=2\left(x^2-4x+4-4\right)\)
\(=2\left[\left(x-2\right)^2-4\right]\)
\(=2\left(x-2\right)^2-8\ge-8\)
Vậy \(B_{min}=-8\Leftrightarrow x=2\)
Bài 2: \(a,\frac{7x-1}{2x^2+6x}=\frac{7x-1}{2x\left(x+3\right)}=\frac{\left(7x-1\right)\left(x-3\right)}{2x\left(x+3\right)\left(x-3\right)}\)
\(\frac{5-3x}{x^2-9}=\frac{5-3x}{\left(x-3\right)\left(x+3\right)}=\frac{\left(5-3x\right)2x}{2x\left(x-3\right)\left(x+3\right)}\)
\(b,\frac{x+1}{x-x^2}=\frac{x+1}{x\left(1-x\right)}=-\frac{x+1}{x\left(x+1\right)}=-\frac{2\left(x-1\right)\left(x+1\right)}{2x\left(x-1\right)^2}\)
\(\frac{x+2}{2-4x+2x^2}=\frac{x+2}{2\left(x-1\right)^2}=\frac{2x\left(x+2\right)}{2x\left(x-1\right)^2}\)
\(c,\frac{4x^2-3x+5}{x^3-1}=\frac{4x^2-3x+5}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(\frac{2x}{x^2+x+1}=\frac{2x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(\frac{6}{x-1}=\frac{6\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(d,\frac{7}{5x}=\frac{7.2\left(2y-x\right)\left(2y+x\right)}{2.5x\left(2y-x\right)\left(2y+x\right)}\)
\(\frac{4}{x-2y}=-\frac{4}{2y-x}=-\frac{4.2.5x\left(2x+x\right)}{2.5x\left(2y-x\right)\left(2y+x\right)}\)
\(\frac{x-y}{8y^2-2x^2}=\frac{x-y}{2\left(4y^2-x^2\right)}=\frac{x-y}{2\left(2y-x\right)\left(2y+x\right)}=\frac{5x\left(x-y\right)}{2.5x.\left(2y-x\right)\left(2y+x\right)}\)
Bài 2: Bạn sử dụng các hằng đẳng thức đáng nhớ là ra.
a)
\(x^2+2x+1=(x+1)^2\)
b)
\(1-4x+4x^2=1^2-2.1.2x+(2x)^2=(1-2x)^2\)
c)
\(a^2+9-6a=a^2-2.3.a+3^2=(a-3)^2\)
\Leftrightarrow \left\{\begin{matrix}
\\
\end{matrix}\right.