Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{\left(2005+1\right).125+1000}{\left(125+1\right).2005-888}\)
= \(\frac{2005.125+125+1000}{125.2005+2005-888}\)
= \(\frac{2005.125+1125}{125.2005+1117}\)
= \(\frac{250625+1125}{250625+1117}\)
= \(\frac{125875}{125871}\)
A = 2006 x 125 + 1000 / 126 x 2005 - 888
A = (2005 + 1) x 125 + 1000 / (125 + 1) x 2005 - 888
A = 2005 x 125 + 125 + 1000 / 125 x 2005 + 2005 - 888
A = 2005 x 125 + 1125 / 125 x 2005 + 1117
A = 1125 / 1117
=13/12x14/13x15/14x16/15x...x2006/2005x2007/2006x2008/2007
=2008/12
=502/3
A = 1\(\dfrac{1}{12}\) \(\times\) 1\(\dfrac{1}{13}\) \(\times\) 1\(\dfrac{1}{14}\) \(\times\) 1\(\dfrac{1}{15}\) \(\times\) ... \(\times\) 1\(\dfrac{1}{2005}\) \(\times\) 1\(\dfrac{1}{2006}\) \(\times\) 1\(\dfrac{1}{2007}\)
A = ( 1 + \(\dfrac{1}{12}\)) \(\times\) ( 1 + \(\dfrac{1}{13}\)) \(\times\) ( 1 + \(\dfrac{1}{14}\)) \(\times\)...\(\times\) ( 1 + \(\dfrac{1}{2006}\))\(\times\)(1+\(\dfrac{1}{2007}\))
A = \(\dfrac{13}{12}\) \(\times\) \(\dfrac{14}{13}\) \(\times\) \(\dfrac{15}{14}\) \(\times\) ...\(\times\) \(\dfrac{2007}{2006}\) \(\times\) \(\dfrac{2008}{2007}\)
A = \(\dfrac{13\times14\times15\times...\times2007}{13\times14\times15\times...\times2007}\) \(\times\) \(\dfrac{2008}{12}\)
A = 1 \(\times\) \(\dfrac{502}{3}\)
A = \(\dfrac{502}{3}\)
a) \(15\times\left(\frac{212121}{434343}+\frac{333333}{353535}\right)=15\times\left(\frac{21\times10101}{43\times10101}+\frac{33\times10101}{35\times10101}\right)\)
\(=15\times\left(\frac{21}{43}+\frac{33}{35}\right)=\frac{6462}{301}\)
b) \(\frac{639\times721721}{721\times639639}=\frac{639\times721\times1001}{721\times639\times1001}=1\)
c) \(\frac{327\times412+400}{328\times412-12}=\frac{\left(328-1\right)\times412+400}{328\times412-12}=\frac{328\times412-412+400}{328\times412-12}\)
\(=\frac{328\times412-12}{328\times412-12}=1\)
d) \(9\times\left(\frac{151515}{171717}+\frac{131313}{181818}\right)=9\times\left(\frac{15\times10101}{17\times10101}+\frac{13\times10101}{18\times10101}\right)=9\times\left(\frac{15}{17}+\frac{13}{18}\right)\)
\(=9\times\frac{491}{306}=\frac{491}{34}\)
TL:
\(\frac{12}{100}\)= 0,12
\(\frac{5}{100}\)= 0,05
\(\frac{306}{1000}\)= 0,306
-HT-
\(a,=15\left(\dfrac{2121}{4343}+\dfrac{222222}{434343}\right)=15\left(\dfrac{21}{43}+\dfrac{22}{43}\right)=15\cdot1=15\)