Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2 Tìm x biết
a) 3x -5 = 13
<=> 3x = 18
<=> x = 6
Vậy x = 6
b) 4x - 2 = 3x + 1
<=> 4x - 3x = 2 + 1
<=> x = 3
Vậy x = 3
c) 5(x - 3) - 2(x - 5) = 58
<=> 5x - 15 - 2x + 10 = 58
<=> 3x - 5 = 58
<=> 3x = 63
<=> x = 21
Vậy x = 21
d) mx + 5x = m2 - 25
<=> mx + 5x + 25 - m2 = 0
<=> x(5 + m) + (5 - m)(5 + m) = 0
<=> (5 + m)(x + 5 - m) = 0
<=> \(\left[{}\begin{matrix}5+m=0\\x+5-m=0\end{matrix}\right.\) <=>\(\left[{}\begin{matrix}m=-5\\x+5-m=0\end{matrix}\right.\) => x + 5 - (-5) = 0
<=> x + 10 = 0
<=> x = -10
Vậy x = -10
#Không chắc lắm :)
Bài làm
a) 3x - 5 = 13
<=> 3x = 18
<=> x = 6
Vậy x = 6 là nghiệm của phương trình.
b) 4x - 2 = 3x + 1
<=> 4x - 3x = 1 + 2
<=> x = 3
Vậy x = 3 là nghiệm của phương trình.
c) 5( x - 3 ) - 2( x - 5 ) = 58
<=> 5x - 15 - 2x + 10 = 58
<=> 3x - 5 = 58
<=> 3x = 63
<=> x = 21
Vậy x = 21 là nghiệm phương trình.
d) Đề chưa rõ. m2m2 là s?
a) \(3x-5=13\\ \Leftrightarrow3x=18\\ \Leftrightarrow x=6\)
Vậy pt có nghiệm \(S=\left\{6\right\}\)
b) \(4x-2=3x+1\\ \Leftrightarrow4x-3x=2+1\\ \Leftrightarrow x=3\)
Vậy pt có tập nghiệm \(S=\left\{3\right\}\)
c) \(5\left(x-3\right)-2\left(x-5\right)=58\\ \Leftrightarrow5x-15-2x+10=58\\ \Leftrightarrow3x-5=58\\ \Leftrightarrow3x=63\\ \Leftrightarrow x=21\)
Vậy pt có tập nghiệm \(S=\left\{21\right\}\)
d) \(mx+5x=m^2-25\\ \Leftrightarrow x\left(m+5\right)=\left(m+5\right)\left(m-5\right)\\ \Leftrightarrow x\left(m+5\right)-\left(m+5\right)\left(m-5\right)=0\\ \Leftrightarrow\left(m+5\right)\left(x+5-m\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}m+5=0\\x+5-m=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}m=-5\\x=m-5\end{matrix}\right.\\ \Leftrightarrow x=-5-5=-10\)
Vậy pt có tập nghiệm \(S=\left\{-10\right\}\)
Bài làm
a) 3x - 5 = 13
<=> 3x = 18
<=> x = 6
Vậy x = 6 là nghiệm của phương trình.
b) 4x - 2 = 3x + 1
<=> 4x - 3x = 1 + 2
<=> x = 3
Vậy x = 3 là nghiệm của phương trình.
c) 5( x - 3 ) - 2( x - 5 ) = 58
<=> 5x - 15 - 2x + 10 = 58
<=> 3x - 5 = 58
<=> 3x = 63
<=> x = 21
Vậy x = 21 là nghiệm phương trình.
d) thiếu điều kiện của m ><
Bài 1:
a) \(\dfrac{3x^2-5}{x^2-5x}+\dfrac{5-15x}{5x-25}\)
\(=\dfrac{3x^2-5}{x\left(x-5\right)}+\dfrac{5\left(1-3x\right)}{5\left(x-5\right)}\)
\(=\dfrac{3x^2-5}{x\left(x-5\right)}+\dfrac{1-3x}{x-5}\)
\(=\dfrac{3x^2-5}{x\left(x-5\right)}+\dfrac{x\left(1-3x\right)}{x\left(x-5\right)}\)
\(=\dfrac{3x^2-5+x\left(1-3x\right)}{x\left(x-5\right)}\)
\(=\dfrac{3x^2-5+x-3x^2}{x\left(x-5\right)}\)
\(=\dfrac{-5+x}{x\left(x-5\right)}\)
\(=\dfrac{x-5}{x\left(x-5\right)}\)
\(=\dfrac{1}{x}\)
b) \(\dfrac{4+x^3}{x-3}-\dfrac{2x+2x^2}{x-3}+\dfrac{2x-13}{x-3}\)
\(=\dfrac{\left(4+x^3\right)-\left(2x+2x^2\right)+\left(2x-13\right)}{x-3}\)
\(=\dfrac{4+x^3-2x-2x^2+2x-13}{x-3}\)
\(=\dfrac{x^3-2x^2-9}{x-3}\)
\(=\dfrac{x^3-3x^2+x^2-9}{x-3}\)
\(=\dfrac{x^2\left(x-3\right)+\left(x-3\right)\left(x+3\right)}{x-3}\)
\(=\dfrac{\left(x-3\right)\left(x^2+x+3\right)}{x-3}\)
\(=x^2+x+3\)
c) \(\dfrac{2}{x-5}+\dfrac{x-25}{\left(x+5\right)\left(x-5\right)}\)
\(=\dfrac{2\left(x+5\right)}{\left(x+5\right)\left(x-5\right)}+\dfrac{x-25}{\left(x+5\right)\left(x-5\right)}\)
\(=\dfrac{2\left(x+5\right)+x-25}{\left(x+5\right)\left(x-5\right)}\)
\(=\dfrac{2x+10+x-25}{\left(x+5\right)\left(x-5\right)}\)
\(=\dfrac{3x-15}{\left(x+5\right)\left(x-5\right)}\)
\(=\dfrac{3\left(x-5\right)}{\left(x+5\right)\left(x-5\right)}\)
\(=\dfrac{3}{x+5}\)
d) Đề sai?
Bài 2:
\(A=2\left(x+1\right)+\left(3x+2\right)\left(3x-2\right)-9x^2\)
\(A=2x+2+9x^2-4-9x^2\)
\(A=2x-2\)
\(A=2\left(x-1\right)\)
Thay x = 15 vào A ta được:
\(A=2\left(15-1\right)\)
\(A=2.14=28\)
giải
a)4x^2-20x-(4x^2+3x-4x-3)=5
4x^2-20x-4x^2-3x+4x+3=5
-19x+3=5
-19x=5-3
-189x=2
x=-2/19
mik giải luôn đó chứ ko viết đầu bài đâu
c)
2x(x-3)-2(x^2-4)=4
2x^2-6x-2x^2+8=4
-6x+8=44
-6x=4-8
-6x=-4
x=2/3
\(\frac{x^2+5}{25-x^2}=\frac{3}{x+5}+\frac{x}{x-5}\)
\(\Leftrightarrow\frac{x^2+5}{\left(5-x\right)\left(5+x\right)}=\frac{3}{5+x}-\frac{x}{5-x}\)
\(\Leftrightarrow\frac{x^2+5}{\left(5-x\right)\left(5+x\right)}=\frac{3\left(5-x\right)-x\left(5+x\right)}{\left(5-x\right)\left(5+x\right)}\)
\(\Rightarrow x^2+5=3\left(5-x\right)-x\left(5+x\right)\)
\(\Leftrightarrow x^2+5=15-3x-5x-x^2\)
\(\Leftrightarrow15-3x-5x-x^2-x^2-5=0\)
\(\Leftrightarrow10-8x-2x^2=0\)
\(\Leftrightarrow2x^2+8x-10=0\)
\(\Leftrightarrow2\left(x^2+4x-5\right)=0\)
\(\Leftrightarrow2\left(x^2+5x-x-5\right)=0\)
\(\Leftrightarrow x^2-x+5x-5=0\)
\(\Leftrightarrow x\left(x-1\right)+5\left(x-1\right)=0\Leftrightarrow\left(x-1\right)\left(x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x+5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-5\end{cases}}}\)
1)
\(\dfrac{x-5}{100}+\dfrac{x-4}{101}+\dfrac{x-3}{102}=\dfrac{x-100}{5}+\dfrac{x-101}{4}+\dfrac{x-102}{3}\)
\(\Leftrightarrow\dfrac{x-5}{100}+1+\dfrac{x-4}{101}+1+\dfrac{x-3}{102}+1=\dfrac{x-100}{5}+1+\dfrac{x-101}{4}+1+\dfrac{x-102}{3}+1\)
\(\Leftrightarrow\dfrac{x-105}{100}+\dfrac{x-105}{101}+\dfrac{x-105}{102}=\dfrac{x-105}{5}+\dfrac{x-105}{4}+\dfrac{x-105}{3}+\dfrac{x-105}{2}\)
\(\Leftrightarrow\dfrac{x-105}{100}+\dfrac{x-105}{101}+\dfrac{x-105}{102}-\dfrac{x-105}{5}-\dfrac{x-105}{4}-\dfrac{x-105}{3}-\dfrac{x-105}{2}=0\)
\(\Leftrightarrow\left(x-105\right)\left(\dfrac{1}{100}+\dfrac{1}{101}+\dfrac{1}{102}-\dfrac{1}{5}-\dfrac{1}{4}-\dfrac{1}{3}-\dfrac{1}{2}\right)=0\)\(\Leftrightarrow105-x=0\)
\(\Leftrightarrow x=105\)
b)
\(\dfrac{29-x}{21}+\dfrac{27-x}{23}+\dfrac{25-x}{25}+\dfrac{23-x}{27}+\dfrac{21-x}{29}=0\)
\(\Leftrightarrow\dfrac{29-x}{21}+1+\dfrac{27-x}{23}+1+\dfrac{25-x}{25}+1+\dfrac{23-x}{27}+1+\dfrac{21-x}{29}+1=0\)
\(\Leftrightarrow\dfrac{50-x}{21}+\dfrac{50-x}{23}+\dfrac{50-x}{25}+\dfrac{20-x}{27}+\dfrac{50-x}{29}=0\)
\(\Leftrightarrow\left(50-x\right)\left(\dfrac{1}{21}+\dfrac{1}{23}+\dfrac{1}{25}+\dfrac{1}{27}+\dfrac{1}{29}\right)=0\)
\(\Leftrightarrow50-x=0\)
\(\Leftrightarrow x=50\)
2)
\(\left(5x+1\right)^2=\left(3x-2\right)^2\)
\(\Leftrightarrow\left|5x+1\right|=\left|3x-2\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}5x+1=3x-2\\5x+1=-3x+2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-3}{2}\\x=\dfrac{1}{8}\end{matrix}\right.\)
b) \(\left(x+2\right)^3=\left(2x+1\right)^3\)
\(\Leftrightarrow x^3+6x^2+12x+8=8x^3+12x^2+6x+1\)
\(\Leftrightarrow-7x^3-6x^2+6x+7=0\)
\(\Leftrightarrow-7x^3+7x^2-13x^2+13x-7x+7=0\)
\(\Leftrightarrow-7x^2\left(x-1\right)-13x\left(x-1\right)-7\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(-7x^2-13x-7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\-7x^2-13x-7=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\-7\left(x^2+\dfrac{13}{7}x+1\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\-7\left(x+\dfrac{13}{14}\right)^2-\dfrac{169}{196}=0\left(l\right)\end{matrix}\right.\)
\(\Leftrightarrow x=1\)
a, \(3x-5=13\Leftrightarrow3x=18\Leftrightarrow x=6\)
b, \(4x-2=3x+1\Leftrightarrow x=3\)
c, \(5\left(x-3\right)-2\left(x-5\right)=58\Leftrightarrow5x-15-2x+10=58\)
\(\Leftrightarrow3x-5=58\Leftrightarrow3x=63\Leftrightarrow x=21\)
d, \(mx+5x=m^2m^2-25\Leftrightarrow x\left(m+5\right)=m^4-25\)
mk quên phần cuối nhé
\(\Leftrightarrow x\left(m+5\right)=m^4-25\Leftrightarrow x=\frac{m^4-25}{m+5}\)