Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 1:
a) Tìm số nguyên tố abcd sao cho ab ,cd là các số nguyên tố và b2=cd + b - c
b) Tìm các số tự nhiên có 2 chữ số mà số đó chia hết cho tích của chúng
c) Tìm số nguyên tố p và q sao cho 7p+q và pq+11 đều là các số nguyên tố
Câu 2:So sánh 2 số sau:
a)31111 và 17139
b)2011 . 23 mũ 2 mũ 3(xl nha,mình k viết dk lũy thừa tầng) và 2010.32 mũ 3 mũ 2


p là số nguyên tố mà p > 13 nên p = 3k + 1 hoặc 3k + 2 (k \(\in\) N)
- Với p = 3k + 1 ta có \(\frac{\left(3k+1\right)^2-1}{24}=\frac{9k^2+1-1}{24}=\frac{9k^2}{24}=\frac{3.3k^2}{3.8}\)chia hết cho 3, là hợp số.
- Với p = 3k + 2 ta có \(\frac{\left(3k+2\right)^2-1}{24}=\frac{9k^2+4-1}{24}=\frac{9k^2+3}{24}=\frac{3.\left(3k^2+1\right)}{3.8}\) chia hết cho 3, là hợp số.
Vậy suy ra điều phải chứng minh.

ta có p^2-1/24
=(p-1)(p+1)/24
do p là số nguyên tố >13=>p-1 chẵn,p+1 chẵn
mà p-1+p+1=2p=>p-1 và p+1 là 2 số chẵn liên tiếp
tích của 2 số chẵn luôn chia hết cho 8 =>(p-1)(p+1) chia hết cho 8(1)
do p>13=>p chia 3 dư 2 hặc dư 1
nếu p chia 3 dư 1=>p=3k+1 =>p-1=3k=>p-1 chia hết cho 3=>(p-1)(p+1) chia hết cho 3 (k thuộc N*)
nếu p chia 3 dư 2=>p=3k+2=>p+1=3k+3=3(k+1)=>p+1 chia hết cho 3=>(p-1)(p+1) chia hết cho 3
=>(p-1)(p+1) lu

a)Ta có: n2+18n=n.(n+18)
Ư(n2+18n)={1,n,n+18,n.(n+18)}
Để n2+18n là số nguyên tố
=>Ư(n2+18n)={1,n.(n+18)}
=>n=1 hoặc n+18=1
Vì n+18>n
=>n=1
Vậy n=1

Bài 1:
Xét 2 TH :
1) p chẵn :
p là số nguyên tố chẵn nên nó chỉ có thể là 2, nhưng 2 không thể là tổng 2 số nguyên tố vì 2 là số nguyên tố nhỏ nhất ---> TH 1 không có số nào.
2) p lẻ :
Giả sử p = m+n (m,n là số nguyên tố).Vì p lẻ ---> trong m và n có 1 lẻ, 1 chẵn
Giả sử m lẻ, n chẵn ---> n = 2 ---> p = m+2 ---> m = p-2 (1)
Tương tự, p = q-r (q,r là số nguyên tố).Vì p lẻ ---> trong q và r có 1 lẻ, 1 chẵn
Nếu q chẵn ---> q = 2 ---> p = 2-r < 0 (loại)
---> q lẻ, r chẵn ---> r = 2 ---> p = q - 2 ---> q = p+2 (2)
(1),(2) ---> p-2 ; p ; p+2 là 3 số nguyên tố lẻ (3)
+ Nếu p < 5 ---> p-2 < 3 ---> p-2 không thể là số nguyên tố lẻ
+ Nếu p = 5 ---> (3) thỏa mãn ---> p = 5 là 1 đáp án.
+ Nếu p > 5 :
...Khi đó p-2; p; p+2 đều lớn hơn 3
...- Nếu p-2 chia 3 dư 1 thì p chia hết cho 3 ---> p ko phải số nguyên tố (loại)
...- Nếu p-2 chia 3 dư 2 thì p+2 chia hết cho 3 ---> p+2 ko phải số n/tố (loại)
Vậy chỉ có 1 đáp án là p = 5.