Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\frac{a}{b}=\frac{c}{d}=>\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}=>\frac{a}{a-b}=\frac{c}{c-d} \)
1. Tính:
a. \(\dfrac{\text{−1 }}{\text{4 }}+\dfrac{\text{5 }}{\text{6 }}=\dfrac{-3}{12}+\dfrac{10}{12}=\dfrac{7}{12}\)
b. \(\dfrac{\text{5 }}{\text{12 }}+\dfrac{\text{-7 }}{8}=\dfrac{10}{24}+\dfrac{-21}{24}=\dfrac{-11}{24}\)
c. \(\dfrac{-7}{6}+\dfrac{-3}{10}=\dfrac{-35}{30}+\dfrac{-9}{30}=\dfrac{-44}{30}=\dfrac{-22}{15}\)
d.\(\dfrac{-3}{7}+\dfrac{5}{6}=\dfrac{-18}{42}+\dfrac{35}{42}=\dfrac{17}{42}\)
2. Tính :
a. \(\dfrac{2}{14}-\dfrac{5}{2}=\dfrac{2}{14}-\dfrac{35}{14}=\dfrac{-33}{14}\)
b.\(\dfrac{-13}{12}-\dfrac{5}{18}=\dfrac{-39}{36}-\dfrac{10}{36}=\dfrac{49}{36}\)
c.\(\dfrac{-2}{5}-\dfrac{-3}{11}=\dfrac{-2}{5}+\dfrac{3}{11}=\dfrac{-22}{55}+\dfrac{15}{55}=\dfrac{-7}{55}\)
d. \(0,6--1\dfrac{2}{3}=\dfrac{6}{10}--\dfrac{5}{3}=\dfrac{3}{5}+\dfrac{5}{3}=\dfrac{9}{15}+\dfrac{25}{15}=\dfrac{34}{15}\)
3. Tính :
a.\(\dfrac{-1}{39}+\dfrac{-1}{52}=\dfrac{-4}{156}+\dfrac{-3}{156}=\dfrac{-7}{156}\)
b.\(\dfrac{-6}{9}-\dfrac{12}{16}=\dfrac{2}{3}-\dfrac{3}{4}=\dfrac{8}{12}-\dfrac{9}{12}=\dfrac{-17}{12}\)
c. \(\dfrac{-3}{7}-\dfrac{-2}{11}=\dfrac{-3}{7}+\dfrac{2}{11}=\dfrac{-33}{77}+\dfrac{14}{77}=\dfrac{-19}{77}\)
d.\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...\dfrac{1}{8.9}+\dfrac{1}{9.10}\)
\(=\dfrac{1}{1}+\dfrac{1}{10}\)
\(=\dfrac{10}{10}-\dfrac{1}{10}\)
= \(\dfrac{9}{10}\)
Chế Kazuto Kirikaya thử tham khảo thử đi !!!
Mấy câu trên kia dễ rồi mình chữa mình câu \(c\) bài \(3\) thôi nhé Kazuto Kirikaya
d) \(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{9\cdot10}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}\)
\(=1-\dfrac{1}{10}\)
\(=\dfrac{9}{10}\)
Đặt:\(7a=3b=k\)
\(\Rightarrow\left\{{}\begin{matrix}a=\dfrac{k}{7}\\b=\dfrac{k}{3}\end{matrix}\right.\)
\(\Rightarrow\dfrac{k}{7}.\dfrac{k}{3}=20\Rightarrow\dfrac{k^2}{21}=20\Rightarrow k^2=420\Rightarrow k=\pm\sqrt{420}\)
Xét: \(k=\sqrt{420}\)
\(\Rightarrow\left\{{}\begin{matrix}a=\dfrac{\sqrt{420}}{7}\\b=\dfrac{\sqrt{420}}{3}\end{matrix}\right.\)
Xét: \(k=-\sqrt{420}\)
\(\Rightarrow\left\{{}\begin{matrix}a=\dfrac{-\sqrt{420}}{7}\\b=\dfrac{-\sqrt{420}}{3}\end{matrix}\right.\)
b) Dựa vào tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}\)
\(=\dfrac{a+b-c}{2+3-4}=\dfrac{100}{1}=100\)
\(\Rightarrow\left\{{}\begin{matrix}a=100.2=200\\b=100.3=300\\c=100.4=400\end{matrix}\right.\)
c) Đặt: \(\dfrac{a}{4}=\dfrac{b}{7}=k\)
\(\Rightarrow\left\{{}\begin{matrix}a=4k\\b=7k\end{matrix}\right.\)
\(\Rightarrow4k.7k=112\)
\(\Rightarrow28k^2=112\)
\(k^2=4\Rightarrow k=\pm2\)
Xét: \(k=2\)
\(\Rightarrow\left\{{}\begin{matrix}a=2.4=8\\b=2.7=14\end{matrix}\right.\)
Xét:\(k=-2\)
\(\Rightarrow\left\{{}\begin{matrix}a=-2.4=-8\\c=-2.7=-14\end{matrix}\right.\)
\(\text{a) }7a=3b\text{ và }ab=20\\ \text{Đặt }7a=3b=k\Rightarrow\left\{{}\begin{matrix}a=\dfrac{1}{7}k\\b=\dfrac{1}{3}k\end{matrix}\right.\left(1\right)\\ \text{Từ }\left(1\right)\text{ suy ra : }\\ ab=20\\ \Leftrightarrow\left(\dfrac{1}{7}k\right)\left(\dfrac{1}{3}k\right)=20\\ \Leftrightarrow\left(\dfrac{1}{7}\cdot\dfrac{1}{3}\right)\left(k\cdot k\right)=20\\ \Leftrightarrow\dfrac{1}{21}k^2=20\\ \Leftrightarrow k^2=420\\ \Leftrightarrow k=\sqrt{420}\\ \text{Từ }k=\sqrt{420}\text{ suy ra : }\left\{{}\begin{matrix}a=\dfrac{1}{7}\cdot\sqrt{420}\\b=\dfrac{1}{3}\cdot\sqrt{420}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=\dfrac{\sqrt{420}}{7}\\b=\dfrac{\sqrt{420}}{3}\end{matrix}\right.\\ \text{Vậy }a=\dfrac{\sqrt{420}}{7};b=\dfrac{\sqrt{420}}{3}\)
\(\text{b) }\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}\text{ và }a+b-c=100\\ \text{ Theo bài ra ta có : }\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}\\ a+b-c=100\\ \text{Áp dụng tính chất dãy tỉ số bằng nhau ta được : }\\ \dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=\dfrac{a+b-c}{2+3-4}=\dfrac{100}{1}=100\\ \Rightarrow\left\{{}\begin{matrix}\dfrac{a}{2}=100\\\dfrac{b}{3}=100\\\dfrac{c}{4}=100\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=200\\b=300\\c=400\end{matrix}\right.\\ \text{Vậy }a=200;b=300;c=400\)
\(\text{c) }\dfrac{a}{4}=\dfrac{b}{7}\text{ và }ab=112\\ \text{Đặt }\dfrac{a}{4}=\dfrac{b}{7}=k\Rightarrow\left\{{}\begin{matrix}a=4k\\b=7k\end{matrix}\right.\left(1\right)\\ \text{Từ }\left(1\right)\text{ suy ra : }\\ ab=112\\ \Leftrightarrow4k\cdot7k=112\\ \Leftrightarrow28k^2=112\\ \Leftrightarrow k^2=4\\ \Leftrightarrow k=2\\ \text{Từ }k=2\Rightarrow\left\{{}\begin{matrix}a=4\cdot2\\b=7\cdot2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=8\\b=14\end{matrix}\right.\\ \text{Vậy }a=8;b=14\)
\(\dfrac{a}{3}=\dfrac{b}{2};\dfrac{b}{7}=\dfrac{c}{5}\)
\(\Rightarrow\dfrac{a}{21}=\dfrac{b}{14}=\dfrac{c}{10}\)
Áp dụng tính chất dãy tỉ số bằng nhau,ta có:
\(\dfrac{a}{21}=\dfrac{b}{14}=\dfrac{c}{10}=\dfrac{a-b-c}{21-14-10}=\dfrac{-9}{-3}=3\)
\(\dfrac{a}{21}=3\Rightarrow a=63\)
\(\dfrac{b}{14}=3\Rightarrow b=42\)
\(\dfrac{c}{10}=3\Rightarrow c=30\)
Vậy......
Các câu còn lại tương tự
Bài 1:
a: \(\Leftrightarrow\dfrac{x+2}{2}=x-5\)
=>2x-10=x+2
=>x=12
b: \(\Leftrightarrow\left(x+2\right)^2=100\)
=>x+2=10 hoặc x+2=-10
=>x=-12 hoặc x=8
c: \(\Leftrightarrow\left(2x-5\right)^3=27\)
=>2x-5=3
=>2x=8
=>x=4
a: a/b=c/d=k
=>a=bk; c=dk
\(\dfrac{a}{a-b}=\dfrac{bk}{bk-b}=\dfrac{k}{k-1}\)
\(\dfrac{c}{c-d}=\dfrac{dk}{dk-d}=\dfrac{k}{k-1}=\dfrac{a}{a-b}\)
b: \(\dfrac{a}{b}=\dfrac{bk}{b}=k\)
\(\dfrac{a+c}{b+d}=\dfrac{bk+dk}{b+d}=k=\dfrac{a}{b}\)
c \(\dfrac{a}{3a+b}=\dfrac{bk}{3bk+b}=\dfrac{k}{3k+1}\)
\(\dfrac{c}{3c+d}=\dfrac{dk}{3dk+d}=\dfrac{k}{3k+1}=\dfrac{a}{3a+b}\)
d: \(\dfrac{ac}{bd}=\dfrac{bk\cdot dk}{bd}=k^2\)
\(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{b^2k^2+d^2k^2}{b^2+d^2}=k^2=\dfrac{ac}{bd}\)
Câu 2 :
\(x-y=7\)
\(\Rightarrow x=7+y\)
*)
\(B=\dfrac{3\left(7+y\right)-7}{2\left(7+y\right)+y}-\dfrac{3y+7}{2y+7+y}\)
\(=\dfrac{21+3y-7}{14+3y}-\dfrac{3y+7}{3y+7}\)
\(=\dfrac{14y+3y}{14y+3y}-1\)
\(=1-1\)
\(=0\)
Vậy B = 0
2/ Ta có :
\(B=\dfrac{3x-7}{2x+y}-\dfrac{3y+7}{2y+x}\)
\(=\dfrac{3x-\left(x-y\right)}{2x+y}-\dfrac{3y+\left(x-y\right)}{2y+x}\)
\(=\dfrac{3x-x+y}{2y+x}-\dfrac{3y+x-y}{2y+x}\)
\(=\dfrac{2x+y}{2x+y}-\dfrac{2y+x}{2y+x}\)
\(=1-1=0\)
ý a) sao đang \(a,b,c\) lại thành \(x,y,z\) ? :DD??
b: Đặt \(\dfrac{a}{5}=\dfrac{b}{7}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=5k\\b=7k\end{matrix}\right.\)
Ta có: ab=140
nên \(35k^2=140\)
\(\Leftrightarrow k^2=4\)
Trường hợp 1: k=2
\(\Leftrightarrow\left\{{}\begin{matrix}a=5k=10\\b=7k=14\end{matrix}\right.\)
Trường hợp 2: k=-2
\(\Leftrightarrow\left\{{}\begin{matrix}a=5k=-10\\b=7k=-14\end{matrix}\right.\)