Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(2^3+3.\left(\frac{1}{2}\right)^0+\left[\left(-2\right)^2:\frac{1}{2}\right]\)
\(=8+3.1+4:\frac{1}{2}\)
\(=8+3+8=19\)
b)\(\frac{2^{15}.9^4}{6^6.8^3}=\frac{2^{15}.\left(3^2\right)^4}{\left(2.3\right)^6.\left(2^3\right)^3}=\frac{2^{15}.3^8}{2^6.3^6.2^9}\)\(=\frac{2^{15}.3^8}{2^{15}.3^6}=3^2=9\)
c) \(\left(1+\frac{2}{3}-\frac{1}{4}\right).\left(\frac{4}{5}-\frac{3}{4}\right)^2\)
\(=\frac{17}{12}.\frac{1}{400}=\frac{17}{4800}\)
d) \(\left(-\frac{10}{3}\right)^3.\left(\frac{-6}{5}\right)^4=-\frac{100}{27}.\frac{1296}{625}\)\(=\frac{-4.48}{1.25}=-\frac{192}{25}\)
Theo đề ta có:
\(\left(5+\frac{1}{5}-\frac{2}{9}\right)-\left(2-\frac{1}{23}-2\frac{3}{5}+\frac{5}{6}\right)\)\(-\left(8-\frac{2}{3}-\frac{1}{18}\right)\)
= \(5+\)\(\frac{1}{5}-\frac{2}{9}\)-\(2+\frac{1}{23}+2+\frac{3}{5}+\frac{5}{6}-8+\frac{2}{3}-\frac{1}{18}\)
=\(\left(5+2-8\right)+\left(\frac{1}{5}+\frac{3}{5}\right)-\left(\frac{2}{9}-\frac{5}{6}-\frac{2}{3}+\frac{1}{18}\right)+\frac{1}{23}\)
= -1 +\(\frac{4}{5}\)\(-\frac{-11}{9}\)+\(\frac{1}{23}\)
= -1 +\(\frac{4}{5}+\frac{11}{9}+\frac{1}{23}\)
\(\left(5+\frac{1}{5}-\frac{2}{9}\right)-\left(2-\frac{1}{23}-2\frac{3}{5}+\frac{5}{6}\right)-\left(8-\frac{2}{3}-\frac{1}{18}\right)\)
= \(5+\frac{1}{5}-\frac{2}{9}-2+\frac{1}{23}+2+\frac{3}{5}-\frac{5}{6}-8+\frac{2}{3}+\frac{1}{18}\)
= \(\left(5-8\right)+\left(\frac{1}{5}+\frac{3}{5}\right)-\left(\frac{2}{9}-\frac{1}{18}-\frac{2}{3}\right)-\left(2-2\right)+\frac{1}{23}-\frac{5}{6}\)
= \(\left(-3\right)+\frac{4}{5}+\frac{1}{2}+\frac{1}{23}-\frac{5}{6}\)
= \(\left(\left(-3\right)+\frac{4}{5}+\frac{1}{2}-\frac{5}{6}\right)+\frac{1}{23}\)
= \(-\frac{38}{15}+\frac{1}{23}\)
= \(-\frac{859}{345}\)
Bài 1:
\(a,22\frac{1}{2}.\frac{7}{9}+50\%-1,25\)
=\(\frac{45}{2}.\frac{7}{9}+\frac{1}{2}-\frac{5}{4}\)
=\(\frac{35}{2}+\frac{1}{2}-\frac{5}{4}\)
=\(\frac{70}{4}+\frac{2}{4}-\frac{5}{4}\)
=\(\frac{67}{4}\)
\(b,1,4.\frac{15}{49}-\left(\frac{4}{5}+\frac{2}{3}\right):2\frac{1}{5}\)
=\(\frac{7}{5}.\frac{15}{49}-\left(\frac{12}{15}+\frac{10}{15}\right):\frac{11}{5}\)
=\(\frac{3}{7}-\frac{22}{15}.\frac{5}{11}\)
=\(\frac{3}{7}-\frac{2}{3}\)
=\(-\frac{5}{21}\)
\(c,125\%.\left(-\frac{1}{2}\right)^2:\left(1\frac{5}{6}-1,6\right)+2016^0\)
=\(\frac{5}{4}.\frac{1}{4}:\left(\frac{11}{6}-\frac{8}{5}\right)+1\)
=\(\frac{5}{16}:\frac{7}{30}+1\)
=\(\frac{131}{56}\)
\(d,1,4.\frac{15}{49}-\left(20\%+\frac{2}{3}\right):2\frac{1}{5}\)
=\(\frac{7}{5}.\frac{15}{49}-\left(\frac{1}{5}+\frac{2}{3}\right):\frac{11}{5}\)
=\(\frac{3}{7}-\frac{13}{15}:\frac{11}{5}\)
=\(\frac{3}{7}-\frac{13}{33}\)
=\(\frac{8}{231}\)
Bài đ làm giống hệt như bài c
Bài 2 :
\(a,\left|\frac{3}{4}.x-\frac{1}{2}\right|=\frac{1}{4}\)
=>\(\left[{}\begin{matrix}\frac{3}{4}.x-\frac{1}{2}=\frac{1}{4}\\\frac{3}{4}.x-\frac{1}{2}=-\frac{1}{4}\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}\frac{3}{4}.x=\frac{1}{4}+\frac{1}{2}=\frac{3}{4}\\\frac{3}{4}.x=-\frac{1}{4}+\frac{1}{2}=\frac{1}{4}\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=\frac{3}{4}:\frac{3}{4}=1\\x=\frac{1}{4}:\frac{3}{4}=\frac{1}{3}\end{matrix}\right.\)
Vậy x ∈{1;\(\frac{1}{3}\)}
\(b,\frac{5}{3}.x-\frac{2}{5}.x=\frac{19}{10}\)
=>\(\frac{19}{15}.x=\frac{19}{10}\)
=>\(x=\frac{19}{10}:\frac{19}{15}=\frac{3}{2}\)
Vậy x ∈ {\(\frac{3}{2}\)}
c,\(\left|2.x-\frac{1}{3}\right|=\frac{2}{9}\)
=>\(\left[{}\begin{matrix}2.x-\frac{1}{3}=\frac{2}{9}\\2.x-\frac{1}{3}=-\frac{2}{9}\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}2.x=\frac{2}{9}+\frac{1}{3}=\frac{5}{9}\\2.x=-\frac{2}{9}+\frac{1}{3}=\frac{1}{9}\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=\frac{5}{9}:2=\frac{5}{18}\\x=\frac{1}{9}:2=\frac{1}{18}\end{matrix}\right.\)
Vậy x∈{\(\frac{5}{18};\frac{1}{18}\)}
\(d,x-30\%.x=-1\frac{1}{5}\)
=\(70\%x=-\frac{6}{5}\)
=\(\frac{7}{10}.x=-\frac{6}{5}\)
=>\(x=-\frac{6}{5}:\frac{7}{10}=-\frac{12}{7}\)
Vậy x∈{\(-\frac{12}{7}\)}
Bài 2
a/
\(\Rightarrow\left[{}\begin{matrix}\frac{3}{4}.x-\frac{1}{2}=\frac{1}{4}\\\frac{3}{4}.x-\frac{1}{2}=-\frac{1}{4}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\frac{3}{4}.x=\frac{1}{4}+\frac{1}{2}\\\frac{3}{4}.x=-\frac{1}{4}+\frac{1}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\frac{3}{4}.x=\frac{3}{4}\\\frac{3}{4}.x=\frac{1}{4}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{3}{4}:\frac{3}{4}\\x=\frac{1}{4}:\frac{3}{4}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=\frac{1}{3}\end{matrix}\right.\)
Vậy \(x=1\) hoặc \(x=\frac{1}{3}\)
b/ Đặt x làm thừa số chung rồi tính như bình thường
c/ Tương tự câu a
d/ Tương tự câu b
trong tích trên có 1 thừa số như thế này:
\(\left(\frac{1}{125}-\frac{1}{5^3}\right)\)
\(=\left(\frac{1}{125}-\frac{1}{125}\right)\)
=0
=> tích trên bằng 0
\(=\frac{12}{7}\cdot\frac{3}{4}-\frac{6}{7}\cdot\frac{4}{3}+\frac{6}{7}\)
\(=\frac{6}{7}\left(\frac{3}{2}-\frac{4}{3}+1\right)\)
\(=\frac{6}{7}\left(\frac{1}{6}+1\right)=\frac{6}{7}\cdot\frac{7}{6}=1\)
2.
\(=2017\cdot2018\cdot\left[\left(2016\cdot2018\right)-\left(2016\cdot2017\right)\right]\)
\(=2017\cdot2018\cdot2016\left(2018-2017\right)=2016\cdot2017\cdot2018\)
3.
\(\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)\left(\frac{1}{4}-1\right)....\left(\frac{1}{100}-1\right)=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot....\cdot\frac{99}{100}\)
\(=\frac{1}{100}\)
4.
\(=\frac{1+2+2^2+2^4+...+2^9}{2\left(1+2+2^2+2^3+2^4+...+2^9\right)}\)
\(=\frac{1}{2}\)
mình chỉ làm được câu 3 thôi
có \(\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)....\left(\frac{1}{100}-1\right)\)
\(=\frac{-1}{2}\times\frac{-2}{3}\times....\times\frac{-99}{100}\)
\(=\frac{\left(-1\right)\left(-2\right)....\left(-99\right)}{2\times3\times....\times100}\)
\(=\frac{-\left(1\times2\times....\times99\right)}{2\times3\times....\times100}\)
\(=\frac{-1}{100}\)
a)\(5-\left(-\frac{5}{11}\right)^0+\left(\frac{1}{3}\right)^2:3=5-1+\frac{1}{9}\cdot\frac{1}{3}=4+\frac{1}{27}=\frac{108}{27}+\frac{1}{27}=\frac{109}{27}\)
b)\(2^3+3.\left(\frac{1}{2}\right)^0+\left[\left(-2\right)^3:\frac{1}{2}\right]=8+3.1+\left[\left(-8\right)\cdot2\right]=8+3-16=-5\)
a/ \(5-\left(-\frac{5}{11}\right)^0+\left(\frac{1}{3}\right)^2:3=5-1+\frac{1}{9}:3=5-1+\frac{1}{27}=4+\frac{1}{27}=\frac{109}{27}\)
b/ \(2^3+3.\left(\frac{1}{2}\right)^0+\left[\left(-2\right)^3:\frac{1}{2}\right]=8+3.1+\left[-8:\frac{1}{2}\right]=11+-16=-5\)
1/ Bg
\(\frac{21^4}{27.\left(-343\right)}\)= \(\frac{\left(3.7\right)^4}{3^3.\left(-7\right)^3}\)
= \(\frac{3^4.7^4}{3^3.\left(-7\right)^3}\)
= \(\frac{3.\left(-7\right)}{1.1}\)
= 3.(-7)
= -21
2/ Bg
Ta có: \(\frac{a}{4}=\frac{b}{5}=\frac{c}{2}\)và a + b - c = 21 (a, b, c thuộc Z)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{a}{4}=\frac{b}{5}=\frac{c}{2}=\frac{a+b-c}{4+5-2}=\frac{21}{7}\)= 3
=> a = 3.4 = 12
=> b = 3.5 = 15
=> c = 3.2 = 6
Vậy a = 12, b = 15 và c = 6
(22+21+22+23).20.21.22.23
=(4+2+4+8).1.2.4.8
=18.1.2.4.8
=1152
1 3/8+1/8:(0,75-1/2)-25%.1/2
=11/8+1/8:(3/4-1/2)-1/4.1/2
=12/8:1/4-1/8
=6/1-1/8
=47/8
12 1/3-5/6:(24-23 5/7)
=37/3-5/6:(24-166/7)
=37/3-5/6:2/7
=37/3-35/2
=31/6
(-1/2)2-(-2)2-50
=1/4-4-1
=-19/4
\(\left(2^2+2^1+2^2+2^3\right)×2^0×2^1×2^2×2^3\)
\(=\left(4+2+4+8\right)×1×2×4×8\)
\(=18×1×2×4×8\)
\(=1152\)
\(1\frac{3}{8}+\frac{1}{8}:\left(0,75-\frac{1}{2}\right)-25\%×\frac{1}{2}\)
\(=\frac{11}{8}+\frac{1}{8}:\left(\frac{3}{4}-\frac{1}{2}\right)-\frac{1}{4}×\frac{1}{2}\)
\(=\frac{11}{8}+\frac{1}{8}:\frac{1}{4}-\frac{1}{8}\)
\(=\frac{11}{8}+\frac{1}{2}-\frac{1}{8}\)
\(=\frac{7}{4}\)
\(12\frac{1}{3}-\frac{5}{6}:\left(24-23\frac{5}{7}\right)\)
\(=\frac{37}{3}-\frac{5}{6}:\left(24-\frac{166}{7}\right)\)
\(=\frac{37}{3}-\frac{5}{6}:\frac{2}{7}\)
\(=\frac{37}{3}-\frac{35}{12}\)
\(=\frac{113}{12}\)
\(\left(\frac{-1}{2}\right)^2-\left(-2\right)^2-5^0\)
\(=\frac{1}{4}-4-1\)
\(=\frac{-19}{4}\)
\(125\%\cdot\left(-\frac{1}{2}\right)^2\div\left(1\frac{5}{6}-1,5\right)+2016^0\)
\(=\frac{125}{100}\cdot\frac{1}{4}\div\left(\frac{11}{6}-\frac{3}{2}\right)+1\)
\(=\frac{5}{4}\cdot\frac{1}{4}\div\left(\frac{11}{6}-\frac{9}{6}\right)+1\)
\(=\frac{5}{16}\div\frac{2}{6}+1\)
\(=\frac{15}{16}+1=\frac{31}{16}\)
\(125\%.\left(\frac{-1}{2}\right)^2:\left(1\frac{5}{6}-1,5\right)+2016^0\)
\(=\frac{125}{100}.\frac{1}{4}:\left(\frac{11}{6}-\frac{3}{2}\right)+1\)
\(=\frac{5}{16}:\left(\frac{11}{6}-\frac{9}{6}\right)+1\)
\(=\frac{5}{16} :\frac{1}{3}+1\)
\(=\frac{5}{16} .\frac{3}{1}+1\)
\(=\frac{15}{16}+1\)
\(=\frac{31}{16}\)