\(\left(\frac{1}{2}\right)^{225}\)và \(\left(...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 9 2016

Ta có:

 \(\left(\frac{1}{2}\right)^{225}=\left[\left(\frac{1}{2}\right)^9\right]^{25}=\left(\frac{1}{516}\right)^{25}\)

\(\left(\frac{1}{3}\right)^{100}=\left[\left(\frac{1}{3}\right)^4\right]^{25}=\left(\frac{1}{81}\right)^{25}\)

\(\frac{1}{516}< \frac{1}{81}\Rightarrow\left(\frac{1}{516}\right)^{25}< \left(\frac{1}{81}\right)^{25}\Rightarrow\left(\frac{1}{2}\right)^{225}< \left(\frac{1}{3}\right)^{100}\)

14 tháng 9 2016

Ta có

\(\left(\frac{1}{2}\right)^{225}\)=\(\left(\frac{1}{2}\right)^{9.25}\)=\(\left(\frac{1}{512}\right)^{25}\)

\(\left(\frac{1}{3}\right)^{100}\)=\(\left(\frac{1}{3}\right)^{4.25}\)=\(\left(\frac{1}{81}\right)^{25}\)

Vì \(\frac{1}{512}\)<\(\frac{1}{81}\)   => \(\left(\frac{1}{512}\right)^{25}\)<\(\left(\frac{1}{81}\right)^{25}\)

Hay  \(\left(\frac{1}{2}\right)^{225}\)<\(\left(\frac{1}{3}\right)^{100}\)

Mong bạn tích cho mình nhéleuleuvui

 

14 tháng 9 2016

\(\left(\frac{1}{2}\right)^{225}=\left[\left(\frac{1}{2}\right)^9\right]^{25}=\left(\frac{1}{81}\right)^{25}\)\(\left(\frac{1}{2}\right)^{225}=\left[\left(\frac{1}{2}\right)^9\right]^{25}=\left(\frac{1}{81}\right)^{25}\)

\(\left(\frac{1}{3}\right)^{100}=\left[\left(\frac{1}{3}\right)^4\right]^{25}=\left(\frac{1}{81}\right)^{25}\) 

vì   \(\left(\frac{1}{81}\right)^{25}=\left(\frac{1}{81}\right)^{25}\Rightarrow\left(\frac{1}{2}\right)^{225}=\left(\frac{1}{3}\right)^{100}\)

\(\Rightarrowđpcm\)

2 tháng 11 2016

Ta có : (-1/5)^300=(-1/5^3)100=(-1/125)^100

(-1/3)^500=(-1/3^5)^100=(-1/243)^100

vì (-1/243)^100<(-1/125)^100→(-1/5)^300>(-1/3)^500

b, ta có:-(-2)^300=(2^3)^100=8^100

(-3)^200=(-3^2)^100=9^100

vì 8^100<9^100→-(-2)^300<(-3)^200

 

25 tháng 5 2016

Mình mới học lớp 5

25 tháng 5 2016

mình ko trả lời được đâu nha!

28 tháng 9 2016

Ta có \(-A=\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)...\left(1-\frac{1}{2014^2}\right)\)

\(=\left(\frac{2^2-1}{2^2}\right)\left(\frac{3^2-1}{3^2}\right)...\left(\frac{2014^2-1}{2014^2}\right)\)

\(=\frac{\left(2-1\right)\left(2+1\right)}{2^2}.\frac{\left(3-1\right)\left(3+1\right)}{3^2}...\frac{\left(2014-1\right)\left(2014+1\right)}{2014^2}\)

\(=\frac{1.3}{2.2}.\frac{2.4}{3.3}...\frac{2013.2015}{2014.2014}\)

\(=\frac{1.2...2013}{2.3...2014}.\frac{3.4...2015}{2.3...2014}\)

\(=\frac{1}{2014}.\frac{2015}{2}\)

\(=\frac{2015}{2014.2}>\frac{1}{2}\)hay -A>1/2

=>\(A< \frac{-1}{2}\)hay A<B

10 tháng 9 2016

a)\(\left(\frac{1}{5}\right)^5\).\(5^5\)=\(\frac{1}{3125}\).3125=1

10 tháng 9 2016

(1/5.5)5

=5/55

=15

=1

21 tháng 9 2016

b)\(\frac{1}{330}< \frac{1}{225}\)vi day la truong hop cung tu

c)\(\frac{1}{3^{11}}=\frac{1}{177147}\)

\(\frac{1}{7^{14}}=1,474441139_{X10}^{12}\)

nen \(\frac{1}{3^{11}}< \frac{1}{7^{14}}\)vi day cung la truong hop cung tu

\(nha^{ }\)

14 tháng 9 2016

=> 6x - 3 - 5 - 15x = 44

=> -9x - 8 = 44

=> -9x = 52

=> x = \(\frac{-52}{9}\)

nhớ

14 tháng 9 2016

3(2x-1)-5(1+3x)=44

\(\Leftrightarrow\)6x-3-5-15x=44

\(\Leftrightarrow\)-11x=52

\(\Leftrightarrow\)x=-52/11

22 tháng 10 2016

a) \(\left|x+\frac{1}{2}\right|=\left|2x+3\right|\)

\(\Rightarrow\left[\begin{array}{nghiempt}x+\frac{1}{2}=2x+3\\x+\frac{1}{2}=-\left(2x+3\right)\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}2x-x=\frac{1}{2}-3\\x+\frac{1}{2}=-2x-3\end{array}\right.\)

\(\Rightarrow\left[\begin{array}{nghiempt}x=\frac{-5}{2}\\x+2x=-3-\frac{1}{2}\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}x=\frac{-5}{2}\\3x=\frac{-7}{2}\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}x=\frac{-5}{2}\\x=\frac{-7}{6}\end{array}\right.\)

Vậy \(x\in\left\{\frac{-5}{2};\frac{-7}{6}\right\}\)

22 tháng 10 2016

\(\left|x+\frac{1}{2}\right|=\left|2x+3\right|\)

\(Ta\) \(có\): \(x+\frac{1}{2}=2x+3\)

\(x+\frac{1}{2}=x+x+3\\\)

\(x+\frac{1}{2}=x+\left(x+3\right)\)

\(\Rightarrow\frac{1}{2}=x+3\)

\(\Rightarrow x=\frac{1}{2}-3\)

\(\Rightarrow x=-\frac{5}{2}\)

Vậy \(x=-\frac{5}{2}\)

b, \(\left|x+\frac{1}{5}\right|+\left|x+\frac{2}{5}\right|+\left|x+1\frac{2}{5}\right|=4x\)

\(Ta\) \(có\)

\(x+\frac{1}{5}+x+\frac{2}{5}+x+1\frac{2}{5}\)\(=4x\)

\(3x+\left(\frac{1}{5}+\frac{2}{5}+1\frac{2}{5}\right)=4x\)

\(3x+2=4x\)

\(3x+2=3x+x\)

\(\Rightarrow x=2\)

Vậy \(x=2\)