K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2016

ta có số cách lấy bi ra từ mõi hộp là : \(C^1_7.C^1_6=42\) cách

gọi A là biến có :" Hai bi lấy ra cùng màu"

 ta tinh n(A)

Phương án 1: lấy mỗi hộp 1 bi đỏ : \(C^1_4.C^1_{2_{ }}=8\)

Phương án 2: lấy mỗi hộp 1 bi trắng : \(C^1_3.C^1_4=12\)

=> n(A)=8+12=20 cách

=> P(A)=\(\frac{20}{42}=\frac{10}{11}\)

9 tháng 4 2017

Chọn A

Lời giải

Không gian mẫu là số sách chọn ngẫu nhiên mỗi hộp 1 viên bi

Số phần tử của không gian mẫu là  Ω = C 15 1 . C 18 1

Gọi X là biến cố "2 viên bi lấy ra từ mỗi hộp có cùng màu"

Ta có các kết quả thuận lợi cho biến cố X như sau

● Hộp A lấy ra 1 bi trắng và hộp B lấy ra 1 bi trắng, có C 4 1 . C 7 1  cách

● Hộp A lấy ra 1 bi đỏ và hộp B lấy ra 1 bi đỏ, có  C 5 1 . C 6 1  cách

● Hộp A lấy ra 1 bi xanh và hộp B lấy ra 1 bi xanh, có  C 6 1 . C 5 1  cách

Suy ra số phần tử của biến cố

Vậy xác suất cần tính

P ( X ) = Ω x Ω = 44 135

19 tháng 5 2019

18 tháng 10 2019

Đáp án là A

Xác suất để lấy được 2 viên bi cùng màu là

 

6f4LMq2N654C.png 

3 tháng 5 2018

Ta có, số phần tử của không gian mẫu  n ( Ω ) = C 10 2

Gọi các biến cố: D: “lấy được 2 viên đỏ” ; X: “lấy được 2 viên xanh” ;

V: “lấy được 2 viên vàng”

Ta có D, X, V là các biến cố đôi một xung khắc và  C = D ∪ X ∪ V

P ( C ) = P ( D ) +    P ( X ) + P ( V ) =    C 4 2 C 10 2 + ​  C 3 2 C 10 2   + ​ C 2 2 C 10 2 = 2 9

Chọn đáp án B

19 tháng 12 2020

Hộp 1 có 9 viên, hộp 2 có 9 viên, lấy ở mỗi hộp 1 viên.

\(\Rightarrow n(Ω)=(C_{9}^{1})^2=81\)

A: "Hai viên bi chọn được cùng màu".

TH1: cùng màu vàng: \(C_{6}^{1} .C_{5}^{1} =30\)

TH2: cùng màu đỏ: \(C_{3}^{1} .C_{4}^{1}=12\)

\(\Rightarrow n(A)=30+12=42\)

\(\Rightarrow P(A) =\dfrac{n(A)}{n(Ω)}=\dfrac{42}{81}=\dfrac{14}{27}\).

19 tháng 12 2020

Hộp 1 có 9 viên, hộp 2 có 9 viên, lấy ở mỗi hộp 1 viên.

\(\Rightarrow n(Ω)=(C_{9}^{1})^2=81\)

A: "Hai viên bi chọn được cùng màu".

TH1: cùng màu vàng: \(C_{6}^{1} .C_{5}^{1} =30\)

TH2: cùng màu đỏ: \(C_{3}^{1} .C_{4}^{1}=12\)

\(\Rightarrow n(A)=30+12=42\)

\(\Rightarrow P(A) =\dfrac{n(A)}{n(Ω)}=\dfrac{42}{81}=\dfrac{14}{27}\).

GIÚP EM VỚI Ạ. NGÀY MAI EM NỘP BTVN RỒI Ạ Bài 1: Có 2 hộp bi. Hộp 1 có 18 bi gồm 8 bi trắng và 10 bi đỏ. Hộp 2 có 14 bi gồm 5 bi trắng và 9 bi đỏ. Người ta lấy ngẫu nhiên từ mỗi hộp 1 bi và từ 2 bi đó lại lấy ngẫu nhiêu ra 1 bi. Tìm xác suất để viên bi lấy ra sau cùng là bi trắng. Bài 2: Giả sử có 3 kiện hàng với số sản phẩm tốt tương ứng của mỗi kiện là 20, 15,10. Lấy ngẫu nhiên...
Đọc tiếp

GIÚP EM VỚI Ạ. NGÀY MAI EM NỘP BTVN RỒI Ạ

Bài 1: Có 2 hộp bi. Hộp 1 có 18 bi gồm 8 bi trắng và 10 bi đỏ. Hộp 2 có 14 bi gồm 5 bi trắng và 9 bi đỏ. Người ta lấy ngẫu nhiên từ mỗi hộp 1 bi và từ 2 bi đó lại lấy ngẫu nhiêu ra 1 bi. Tìm xác suất để viên bi lấy ra sau cùng là bi trắng.

Bài 2: Giả sử có 3 kiện hàng với số sản phẩm tốt tương ứng của mỗi kiện là 20, 15,10. Lấy ngẫu nhiên 1 kiện hàng và từ kiện đó lấy hú họa 1 sản phẩm thấy là sản phẩm tốt. Trả sản phẩm đó lại kiện hàng vừa lấy ra, sau đó lại lấy tiếp 1 sản phẩm thì được sản phẩm tốt. Tìm xác suất để các sản phẩm được lấy từ kiện hàng thứ 3. Biết rằng 3 kiện hàng đó đều có 20 sản phẩm

Bài 3: Một bà mẹ sinh 3 người con (mỗi lần sinh 1 con). Giả sử xác suất sinh con trai là 0,5. Tìm xác suất sao cho trong 3 con đó:

a) Có 2 con trai

b) Có không quá 1 con trai

c) Có không ít hơn 1 con trai

Bài 4: Một lo sản phẩm gồm 100 sản phẩm, trong đó có 90 sản phẩm tốt và 10 phế phẩm. Chọn ngẫu nhiên 3 sản phẩm từ lô hàng (chọn 1 lần). Gọi X là số sản phẩm tốt trong 3 sản phẩm lấy ra

a) Tìm phân phối xác suất của X

b) Viết hàm phân phối của X

c) Tính kỳ vọng của X

d) Tính xác suất  P[X\(\ge\)1]

Bài 5: Gieo 10 lần đồng tiền cân đối và đồng chất. Gọi X là số lần xuất hiện mặt sấp trong 10 lần gieo đó

a) Tìm phân phối xác suất của X

b) Viết hàm phân phối của X

c) Tính kỳ vọng và phương sai của X

d) Tính xác suất P[X\(\ge\)1], P[0\(\le\)X\(\le\)8]

 

2
26 tháng 4 2023

Họ Geometridae

26 tháng 4 2023

bài đấy làm như thế nào ạ