K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2018

Bạn nên tách ra hỏi từng bài sẽ có nhiều người giải hơn nhé. Mà bài 2 với 3 lỗi đề rồi, đọc chẳng hiểu đề

Bài 2: CMR các biểu thức sau luôn dương vs mọi giá trị của biếnx2 - 8x +19                                              c) 4x2+ 4x+ 3x2+ y2- 4x+2                                            d) x2- 2xy+2y2+2y+5x2 + 4y2 – 2xy – 6y- 10( x- y) + 32Bài 3:CMR các biểu thức sau luôn âm vs mọi giá trị của bi- x2+ 2x - 7...
Đọc tiếp

Bài 2: CMR các biểu thức sau luôn dương vs mọi giá trị của biến

  1. x2 - 8x +19                                              c) 4x2+ 4x+ 3

  2. x2+ y2- 4x+2                                            d) x2- 2xy+2y2+2y+5

  3. x2 + 4y2 – 2xy – 6y- 10( x- y) + 32

Bài 3:CMR các biểu thức sau luôn âm vs mọi giá trị của bi

  1. - x2+ 2x - 7                                              c) -x2 - 6x - 10

  2. - x2 - 3x - 5                                               d) -x2+ 4xy - 5y2- 8y -18

  3. –x2 + 2xy- 4y2 + 2x + 10y - 8

Bài 4: a) Cho ba số x, y, z thỏa mãn: x + y + z = 0 và x2 + y2 + z2 = a2.  Tính x4 + y4 + z4

b)Cho x, y thỏa mãn : x + y = a ; x2 + y2 = b và x3 + y3 = c. Chứng minh rằng : a3 + 2c = 3ab

c) Cho a + b + c + d = 0.Chứng minh rằng a3 + b3 + c3 + d3 = 3( c +d)( ab – cd)

 

1
30 tháng 9 2018

\(A=x^2-8x+19\)

\(=x^2-8x+16+3\)

\(=\left(x-4\right)^2+3\)

Nhận thấy:  \(\left(x-4\right)^2\ge0\)  ;  \(\forall x\)

=>  \(\left(x-4\right)^2+3>0\)

hay A luôn dương với mọi giá trị của x

Bài 1 : phân tích đa thức thành nhân tử.3x2 + 2x – 1x3 + 6x2 + 11x + 6x4 + 2x2 – 3ab + ac +b2 + 2bc + c2a3 – b3 + c3 + 3abcbài 2 : cho phân thức : tìm điều kiện của x để A có nghĩa.Rút gọn A.Tính x để A < 1.Bài 3 : Chứng minh các bất đẳng thức :Cho a + b + c = 0 . Chứng minh rằng :  a3 + b3 + c3 = 3abc.Cho a, b, c là độ dài ba cạnh của tam giác. Chứng minh rằng : Chứng minh rằng : x5 + y5 ≥  x4y +...
Đọc tiếp

Bài 1 : phân tích đa thức thành nhân tử.

  1. 3x2 + 2x – 1
  2. x3 + 6x2 + 11x + 6
  3. x4 + 2x2 – 3
  4. ab + ac +b2 + 2bc + c2
  5. a3 – b3 + c3 + 3abc

bài 2 : cho phân thức : 

  1. tìm điều kiện của x để A có nghĩa.
  2. Rút gọn A.
  3. Tính x để A < 1.

Bài 3 : Chứng minh các bất đẳng thức :

  1. Cho a + b + c = 0 . Chứng minh rằng :  a3 + b3 + c3 = 3abc.
  2. Cho a, b, c là độ dài ba cạnh của tam giác. Chứng minh rằng :

 

  1. Chứng minh rằng : x5 + y5 ≥  x4y + xy4 với x, y ≠ 0 và x + y ≥ 0

Bài 4 : giải phương trình :

  1. x2 – 3x + 2 + |x – 1| = 0
  2.  
  3.  

 Bài 5 : tìm giá trị lớn nhất và nhỏ nhất (nếu có)

  1. A = x2 – 2x + 5
  2. B = -2x2 – 4x + 1.
  3. C = 

Bài 6 : tính giá trị của biểu thức.

  1. Biết a – b = 7 tính : A = a2(a + 1) – b2(b – 1) + ab – 3ab(a – b + 1)
  2. Cho ba số a, b, c khác 0 thỏa nãm đẳng thức : 

Tính : P = 

Bài 7 : Chứng minh rằng

  1. 8351634 + 8241142 chia hết cho 26.
  2. A = n3 + 6n2 – 19n – 24 chia hết cho 6.
  3. B = (10n – 9n – 1) chia hết cho 27 với n thuộc N*.

Bài 8 :

Trong cuộc đua mô tô có ba xe khởi hành cùng một lúc. Xe thứ hai trong một giờ chạy chậm hơn xe thứ nhất 15km và nhanh xe thứ ba 3km. nên đến đích chậm hơn xe thứ nhất 12 phút và sớm hơn xe thứ ba 3 phút. Không có sự dừng lại dọc đường đi. Tính vận tốc mỗi xe, quãng đường đua và thời gian mỗi xe.

1
15 tháng 5 2016

phê phết chú ạ

3 tháng 9 2020

a, \(x^2-4x+3=0\Leftrightarrow\left(x-3\right)\left(x-1\right)=0\)

TH1 : x = 3 ; TH2 : x = 1

b, \(2x^2-3x-2=0\Leftrightarrow\left(x-2\right)\left(x+\frac{1}{2}\right)=0\)

TH1 : x = 2 ; TH2 : x = -1/2 

c, Đặt \(x^2=t\left(t\ge0\right)\)

\(t^2+2t-8=0\Leftrightarrow\left(t-2\right)\left(t+4\right)=0\)

TH1 : t  = 2 ; TH2 : t = -4 

Tương tự ... 

3 tháng 9 2020

1a) 

x2 - 4x + 3 = x2 - x - 3x + 3 

                  = x( x - 1 ) - 3( x - 1 )

                  = ( x - 1 )( x - 3 )

2c) 

2x2 - 3x - 2 = 2x2 + x - 4x - 2 

                   = x( 2x +1 ) - 2( 2x + 1 )

                   = ( 2x + 1 )( x - 2 ) 

3e)

x4 + 2x2 - 8 (*)

Đặt t = x2

(*) <=> t2 + 2t - 8

       = t2 - 2t + 4t - 8 

       = t( t - 2 ) + 4( t - 2 )

       = ( t - 2 )( t + 4 )

       = ( x2 - 2 )( x2 + 4 )

4b) x2 + 4x - 12 = x2 - 2x + 6x - 12

                          = x( x - 2 ) + 6( x - 2 )

                          = ( x - 2 )( x + 6 )

d) 2x3 + x - 2x2 - 1 = 2x2( x - 1 ) + 1( x - 1 )

                               = ( x - 1 )( 2x2 + 1 )

f) x2 - 2xy - 3y2 = ( x2 - 2xy + y2 ) - 4y2

                         = ( x - y )2 - ( 2y )2

                         = ( x - y - 2y )( x - y + 2y )

                         = ( x - 3y )( x + y )

9 tháng 2 2017

Bài 3a)

\(a+b+c=0\Leftrightarrow a+b=-c\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\)

\(\Leftrightarrow a^3+b^3+c^3=-3ab\left(a+b\right)\)

mà \(a+b=-c\Rightarrow a^3+b^3+c^3=3abc\)

Trog những HĐT trên chắc là

bn đánh máy thiếu số mũ nhỉ??

Phải ko

23 tháng 9 2019

1.\(\left(2x+y\right)\left(4x^2-2xy+y^2\right)-\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)

\(=\left(2x\right)^3+y^3-\left(2x\right)^3+y^3=2y^3\)

2. \(2\left(2x+1\right)\left(3x-1\right)+\left(2x+1\right)^2+\left(3x-1\right)^2\)

\(=\left(2x+1+3x-1\right)^2=\left(5x\right)^2=25x^2\)

3. \(\left(x-y+z\right)^2+\left(z-y\right)^2+2\left(x-y+z\right)\left(y-z\right)\)

\(=\left(x-y+z+y-z\right)^2=x^2\)

4. \(\left(x-3\right)\left(x+3\right)-\left(x-3\right)^2\)

\(=\left(x-3\right)\left(x+3-x+3\right)=6\left(x-3\right)\)

5. \(\left(x^2-1\right)\left(x+2\right)-\left(x-2\right)\left(x^2+2x+4\right)\)

\(=x^3+2x^2-x-2-x^3+y^3=2x^2-x-2+y^3\)

6. Áp dụng các hằng đẳng thức đáng nhớ

phân tích đa thức thành nhân tử.3x2 + 2x – 1x3 + 6x2 + 11x + 6x4 + 2x2 – 3ab + ac +b2 + 2bc + c2a3 – b3 + c3 + 3abcbài 2 : cho phân thức : tìm điều kiện của x để A có nghĩa.Rút gọn A.Tính x để A < 1.Bài 3 : Chứng minh các bất đẳng thức :Cho a + b + c = 0 . Chứng minh rằng :  a3 + b3 + c3 = 3abc.Cho a, b, c là độ dài ba cạnh của tam giác. Chứng minh rằng : Chứng minh rằng : x5 + y5 ≥  x4y + xy4 với...
Đọc tiếp

phân tích đa thức thành nhân tử.

  1. 3x2 + 2x – 1
  2. x3 + 6x2 + 11x + 6
  3. x4 + 2x2 – 3
  4. ab + ac +b2 + 2bc + c2
  5. a3 – b3 + c3 + 3abc

bài 2 : cho phân thức : 

  1. tìm điều kiện của x để A có nghĩa.
  2. Rút gọn A.
  3. Tính x để A < 1.

Bài 3 : Chứng minh các bất đẳng thức :

  1. Cho a + b + c = 0 . Chứng minh rằng :  a3 + b3 + c3 = 3abc.
  2. Cho a, b, c là độ dài ba cạnh của tam giác. Chứng minh rằng :

 

  1. Chứng minh rằng : x5 + y5 ≥  x4y + xy4 với x, y ≠ 0 và x + y ≥ 0

Bài 4 : giải phương trình :

  1. x2 – 3x + 2 + |x – 1| = 0
  2.  
  3.  

 Bài 5 : tìm giá trị lớn nhất và nhỏ nhất (nếu có)

  1. A = x2 – 2x + 5
  2. B = -2x2 – 4x + 1.
  3. C = 

Bài 6 : tính giá trị của biểu thức.

  1. Biết a – b = 7 tính : A = a2(a + 1) – b2(b – 1) + ab – 3ab(a – b + 1)
  2. Cho ba số a, b, c khác 0 thỏa nãm đẳng thức : 

Tính : P = 

Bài 7 : Chứng minh rằng

  1. 8351634 + 8241142 chia hết cho 26.
  2. A = n3 + 6n2 – 19n – 24 chia hết cho 6.
  3. B = (10n – 9n – 1) chia hết cho 27 với n thuộc N*.

Bài 8 :

Trong cuộc đua mô tô có ba xe khởi hành cùng một lúc. Xe thứ hai trong một giờ chạy chậm hơn xe thứ nhất 15km và nhanh xe thứ ba 3km. nên đến đích chậm hơn xe thứ nhất 12 phút và sớm hơn xe thứ ba 3 phút. Không có sự dừng lại dọc đường đi. Tính vận tốc mỗi xe, quãng đường đua và thời gian mỗi xe.

đố tí ko cần giải cụ thể vì mình ko cần nhưng giải cụ thể like nhưng mình ko mún hỏi chỉ đố thui

0
30 tháng 11 2016
  1. Biết a – b = 7 tính : A = a2(a + 1) – b2(b – 1) + ab – 3ab(a – b + 1)
  2. Cho ba số a, b, c khác 0 thỏa nãm đẳng thức : 
30 tháng 11 2016

bạn tk cho mình thì mình tk lại cho bạn.ok

3 tháng 8 2016

1) \(Q=\frac{x^2-2x-1}{x^2}=1-\frac{2}{x}-\frac{1}{x^2}\). Đặt \(y=\frac{1}{x}\), ta có : 

\(Q=-y^2-2y+1=-\left(y^2+2y+1\right)+2=-\left(y+1\right)^2+2\le2\)

Dấu "=" xảy ra \(\Leftrightarrow y=-1\Leftrightarrow\frac{1}{x}=-1\Leftrightarrow x=-1\)

Vậy Max Q = 2 tại x = -1