K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 1 2021

a) VT (vế trái) = -(-a+b+c)+(b+c-1)

=a-b-c+b+c+1

= -(-b-a)-(1-b) = VP(đccm)

( Đổi dấu các số hạng để tạo ra bt như vế phải )

b) VT = -(a+b)+(b-c)-(a-c)

= -a-b+b-c-a+c

= -2a = VP ( đccm)

(Tính như bình thường)

#Hoctot

15 tháng 2 2018

\(-\left(a-c\right)-\left(a-b+c\right)+\left(-d+c\right)\)

\(=-a-c-a+b-c-d+c\)

\(=-2a-c+b-d\)

10 tháng 3 2020

1/ (a - b + c) - (a + c)

= a - b + c - a - c

= -b

2/ (a + b) - (b - a) + c 

= a + b - b + a + c

= 2a + c

1. Biến đổi VT ta có: a - b + c - a - c = -b = VP

Vậy đẳng thức dc cm

2. Biến đổi VT ta có: a + b - b + a + c = 2a + c = VP

Vậy đẳng thức dc cm

3 tháng 2 2017

1) Ta có : (a-b+c)-(a+c) = -b

=> a-b+c-a-c = -b

=> (a-a)+(c-c)-b = -b

=> 0 + 0 - b = -b

=> -b = -b

Vậy (a-b+c)-(a+c) = -b

2) Ta có (a+b)-(b-a)+c = 2a+c

=> a+b-b+a+c = 2a+c

=> (a+a)+(b-b)+c = 2a+c

=> 2a+0+c = 2a+c

=> 2a+c = 2a+c

Vậy (a+b)-(b-a)+c = 2a+c

3) -(a+b-c)+(a-b-c) = -2b

=> -a-b+c+a-b-c = -2b

=> (-a+a)+[-b+(-b)]+(c-c) = -2b

=> 0+(-2b)+0 = -2b

Vậy -(a+b-c)+(a-b-c) = -2b

5 tháng 3 2020

1(a-b+c)-(a+c)                                                          2(a+b)-(b-a)+c

=a-b+c-a-c                                                                 =a+b-b+a+c

=a+(-b)+c+(-a)+(-c)                                                   =a+(b-b)+a+c

=[a+(-a)]+[c+(-c)]+(-b)                                               =a+0+a+c

=0+0+(-b)                                                                  =a+a+c

=-b                                                                             =2a+c

3) - (a+b-c)+(a-b-c)

  = -a-b+c+a-b-c

 =(-a+a)+(c-c)-b-b

 =-2b

5 tháng 8 2021

Trả lời:

a, a ( b + c ) - b ( a + c )

= ab + ac - ab - bc

= ( ab - ab ) + ac - bc

= ac - bc

= c( a - b )    (đpcm)

b, d ( a + b - c ) + a ( b - c - d )

= ad + bd - cd + ab - ac - ad

= bd - cd + ab - ac

= ( bd - cd ) + ( ab - ac )

= d( b - c ) + a( b - c )

= ( d + a )( b - c )   (đpcm)

c, 2a ( a - b + c ) - ( b + c ) 

= 2a2 - 2ab + 2ac - b - c 

= ( 2ac - c ) - ( 2ab + b ) + 2a2

= c( 2a - 1 ) - 2b( 2a - 1 ) + 2a2    (đpcm)

5 tháng 8 2021

a) = a x b + a x c - b x a + b x c và c x a - c x b

= (a x b - b x a ) + a x c - b x c và c x a - c x b

= (a - b) x c và c x (a - b)

vạy hai biểu thức bặng nhau

 b) = d x a + d x b - d x c  + a x b -a x c - a x d và (d + a) x (b -c)

(d x a - a x d) + (b - c) x d + (b - c ) x a 

=( b-c)x (a + d)

mk lười lắm để tối mk làm tiếp

31 tháng 1 2019

Ta có:

Vế trái: -a.(c-d)-d.(a+c)

=-ac+ad-ad-cd

=-ac-cd (1)

Vế phải: -c(a+d)=-ac-cd (1)

Vì (1)=(2)

<=> -a.(c-d)-d.(a+c)=-c.(a+d) (đpcm)

(Lưu ý: "đpcm" nghĩa là "điều phải chứng minh".)

31 tháng 1 2019

Lời giải:

1) \(VT=-a.\left(c-d\right)-d.\left(a+c\right)\)

$=-ac+ad-da-dc$

$=-ac-dc$

$=-c(a+d) (đpcm)$

$2) (3a+2).(2a-1)+(3-a).(6a+2)-17.(a-1)$

$=6a^2-3a+4a-2+18a+6-6a^2-2a-17a+17$

$=21$

Vậy giá trị biểu thức không phụ thuộc vào a

24 tháng 3 2020

1) (a-b+c)-(a+c)=a-b+c-a-c=-b (đpcm)

2) (a+b)-(b-a)+c=a+b-b+a+c=2a+c (đpcm)

3) -(a+b-c)+(a-b-c)=-a-b+c+a-b-c=-2b (đpcm)

4) a(b+c) -a(b+d)=ab+ac-ab-ad=ac-ad=a(c-d) (đpcm)

5) a(b-c)+a(d+c)=ab-ac+ad+ac=ab+ad=a(b+d) (đpcm)

CHÚC BẠN HỌC TỐT NHÉ!

\(\left(a-b+c\right)-\left(a+c\right)=-b\)

\(a-b+c-a-c=-b\)

\(-b=-b\left(đpcm\right)\)

\(\left(a+b\right)-\left(b-a\right)+c=2a+c\)

\(a+b-b+a+c=2a+c\)

\(2a+c=2a+c\left(đpcm\right)\)

\(-\left(a+b-c\right)+\left(a-b-c\right)=-2b\)

\(-a-b+c+a-b-c=-2b\)

\(-2b=-2b\left(đpcm\right)\)

lm cx dễ thoi , bn lm tiếp nha ! 

31 tháng 1 2017

1. (a-b+c) -(a+c) = a-b+c-a-c = -b
2. (a+b) - (b-a) +c = a+b -b +a +c =2a+c
3. -(a+b-c)+(a-b-c) = -a-b+c a-b-c = -2b
4. a(b+c) -a(b+d) = a(b+c-b-d) = a( c-d)
5. a(b-c) +a(d+c) = a(b-c+d+c) = a(b+d)

31 tháng 1 2017

1.= a-b+c-a-c= (a-a)-b+(c-c)=0-b+0=-b

2.=a+b-b+a+c=a+a+b-b+c=2a+c

3.=-a-b+c+a-b-c=-a+a-(b+b)+c-c=-2b

4.=ab+ac-ab-ad=ac-ad=a(c-d)

5.=ab-ac+ad+ac=(-ac+ac)+ab+ad=ab+ad=a(b+d)

tk mik nha, chúc bn học tốt