
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(a;43^2+43.17=43\left(43+17\right)=43.60⋮60\left(đpcm\right)\)
\(b;27^5-3^{11}=3^{15}-3^{11}=3^{11}\left(3^4-1\right)=3^{11}.80⋮80\left(đpcm\right)\)

1.
a)
\(5x\left(x-2y\right)+2\left(2y-x\right)^2\\ =5x\left(x-2y\right)+2\left(x-2y\right)^2\\ =\left(x-2y\right)\left[5x+2\left(x-2y\right)\right]\\ =\left(x-2y\right)\left(5x+2x-4y\right)\\ =\left(x-2y\right)\left(7x-4y\right)\)
b)
\(7x\left(y-4\right)^2-\left(4-y\right)^3\\ =7x\left(4-y\right)^2-\left(4-y\right)^3\\ =\left(4-y\right)^2\left(7x+y-4\right)\)
c)
\(\left(4x-8\right)\left(x^2+6\right)-\left(4x-8\right)\left(x+7\right)+9\left(8-4x\right)\\ =\left(4x-8\right)\left(x^2+6\right)-\left(4x-8\right)\left(x+7\right)-9\left(4x-8\right)\\ =\left(4x-8\right)\left(x^2+6-x-7-9\right)\\ =4\left(x-2\right)\left(x^2-x-10\right)\)

Bài 1:
a, \(5x\left(x-2y\right)+2\left(2y-x\right)^2\)
\(=5x^2-10xy+2\left(4y^2-4xy+x^2\right)\)
\(=5x^2-10xy+8y^2-8xy+2x^2\)
\(=7x^2-18xy+8y^2\)
\(=7x^2-14xy-4xy+8y^2\)
\(=7x.\left(x-2y\right)-4y.\left(x-2y\right)=\left(x-2y\right).\left(7x-4y\right)\)
b, \(7x\left(y-4\right)^2-\left(4-y\right)^2\)
\(=7x.\left(y-4\right)^2-\left(y-4\right)^2\)
\(=\left(y-4\right)^2.\left(7x-1\right)\)
Chúc bạn học tốt!!!

a, Ta có :
\(43^2+43.17=43\left(43+17\right)=43.60⋮60\)
\(\rightarrowđpcm\)
b, Ta có :
\(27^5-3^{11}=3^{15}-3^{11}=3^{11}\left(3^4-1\right)=3^{11}.80⋮80\)
\(\rightarrowđpcm\)

a: \(=35^{2018}\left(35-1\right)=35^{2018}\cdot34⋮17\)
b: \(=43^{2018}\left(43+1\right)=43^{2018}\cdot44⋮11\)
d: \(=6mn-4m-9n+6-6mn+9m+4n-6\)
=5m-5n=5(m-n) chia hết cho 5

Bài 2 :
Ta có: (10a + 5)2 = (10a)2 + 2 .10a . 5 + 52
= 100a2 + 100a + 25
= 100a(a + 1) + 25.
Cách tính nhẩm bình thường của một số tận cùng bằng chữ số 5;
Ta gọi a là số chục của số tự nhiên có tận cùng bằng 5 => số đã cho có dạng 10a + 5 và ta được
(10a + 5)2 = 100a(a + 1) + 25
Vậy để tính bình phương của một số tự nhiên có tận cùng bởi chữ số 5 ta tính tích a(a + 1) rồi viết 25 vào bên phải.
Áp dụng;
- Để tính 252 ta tính 2(2 + 1) = 6 rồi viết tiếp 25 vào bên phải ta được 625.
- Để tính 352 ta tính 3(3 + 1) = 12 rồi viết tiếp 25 vào bên phải ta được 1225.
- 652 = 4225
- 752 = 5625.
Bài 4 :
a) 342 + 662 + 68 . 66 = 342 + 2 . 34 . 66 + 662 = (34 + 66)2 = 1002 = 10000.
b) 742 + 242 – 48 . 74 = 742 - 2 . 74 . 24 + 242 = (74 - 24)2
=502 =2500

1) \(A=-2x^2-10y^2+4xy+4x+4y+2013=-2\left(x-y-1\right)^2-8\left(y-\frac{1}{2}\right)^2+2017\le2017\forall x,y\inℝ\)Đẳng thức xảy ra khi x = 3/2; y = 1/2
2) \(A=a^4-2a^3+2a^2-2a+2=\left(a^2+1\right)\left(a-1\right)^2+1\ge1\)
Đẳng thức xảy ra khi a = 1
3) \(N=\left(x-y\right)\left(x-2y\right)\left(x-3y\right)\left(x-4y\right)+y^4=\left(x^2-5xy+4y^2\right)\left(x^2-5x+6y^2\right)+y^4=\left(x^2-5xy+4y^2\right)^2+2y^2\left(x^2-5xy+4y^2\right)+y^4=\left(x^2-5xy+5y^2\right)^2\)(là số chính phương, đpcm)
4) \(a^3+b^3=3ab-1\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)-3ab+1=0\Leftrightarrow\left[\left(a+b\right)^3+1\right]-3ab\left(a+b+1\right)=0\)\(\Leftrightarrow\left(a+b+1\right)\left(a^2+2ab+b^2-a-b+1\right)-3ab\left(a+b+1\right)=0\Leftrightarrow\left(a+b+1\right)\left(a^2+b^2-ab-a-b+1\right)=0\)Vì a, b dương nên a + b + 1 > 0 suy ra \(a^2+b^2-ab-a-b+1=0\Leftrightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2=0\Leftrightarrow a=b=1\)
Do đó \(a^{2018}+b^{2019}=1+1=2\)
5) \(A=n^3+\left(n+1\right)^3+\left(n+2\right)^3=3n\left(n^2+5\right)+9\left(n^2+1\right)⋮9\)(Do số chính phương chia 3 dư 1 hoặc 0)

Nè, bài này mình chỉ làm được hai câu a,b thoi nha
a) Chứng minh: 432 + 43.17 chia hết cho 16
432 + 43.17 = 43.(43 + 17) = 43.60 ⋮ 60
b) Chứng minh: n2.(n + 1) + 2n(x + 1) chia hết cho 6 với mọi n ∈ Z
n2(n + 1) + 2n(n + 1) = (n2 + 2n)(n + 1) = n(n + 1)(n + 2)
mà tích ba số tự nhiên liên tiếp chia hết cho 6 (một số chia hết cho 2, một số chia hết cho 3, UWCLL (2;3) = 1)
⇒n2 .(n + 1) + 2n(n + 1) + n(n + 1)(n + 2) ⋮ 6