\(\widehat{BMA}=135^0\) ; \(BM=2\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 6 2017

Dựng AH vuông góc với BM, theo giả thiết : góc BMA = 135o => góc AMH = 45o, hay ΔAHM vuông cân tại H.

Vì \(MA=\sqrt{8}\)nên \(AH=\frac{MA}{\sqrt{2}}=\sqrt{3}\)

Góc \(BMH=\)góc \(BMA\)+ góc \(AMH=135^O+45^O=180^0\)

\(=>B,M,H\)thẳng hàng

\(=>BH=BM+MH=2+\sqrt{3}\)

Áp dụng định lí pytago cho tam giác AHB ta được

\(AB^2=BH^2=AH^2=\left(2+\sqrt{3}\right)+\left(\sqrt{3}\right)=10+4\sqrt{3}\)

Vậy \(S_{\left(ABC\right)}=\frac{1}{2}AB^2=5+2\)

19 tháng 6 2017

\(MA=\sqrt{6}\) ko phai \(\sqrt{8}\)

18 tháng 6 2017

1 ,áp dụng bộ 3 pitago trong tam giác abc  suy ra AC=5 cm dựa vào pitago đảo có : \(5^2+12^2\)= 13 suy ra tam giác ACD vuông tại c  

S tứ giác = SABC  +SADC =1/2 .3.4 +1/2. 5.12=36 cm ^2.

2,bài 2 vẽ hình lâu lém tự làm nha bn 

3,

18 tháng 6 2017

B1 minh da lam dc trc do roi nhung van cam on ban vi da giup do

23 tháng 6 2017

a, \(vì\)AD là phân giác suy ra góc BAD =góc DAC =45 ĐỘ

cos45 độ = AD/AB =4 /AB =1/ căn 2 suy ra AB =4 NHÂN CĂN 2

TH TỰ dùng sin 45 độ =dc/ac =5/ad =1/căn 2 suy ra AC =5 CĂN 2  ÁP DỤNG PITA GO TÌM RA CẠNH bc 

b,

23 tháng 6 2017

sao lại \(\frac{1}{\sqrt{2}}\) ?

14 tháng 7 2019

1)

gọi I là giao điểm của BD và CE

ta có E là trung điểm cua AB nên EB bằng 3 cm

xét △EBI có \(\widehat{I}\)=900 

EB2 = EI2 + BI2 =32=9             (1)

tương tự IC2 + DI2 = 16            (2)

lấy (1) + (2) ta được

EI2+DI2+BI2+IC2=25

⇔ ED2+BC2=25

xét △ABC có E là trung điểm của AB và D là trung điểm của AC

⇒ ED là đường trung bình của tam giác

⇒ 2ED =BC

⇔ ED2=14BC2

⇒ 14BC2+BC2=25

⇔ 54BC2=25

⇔ BC2=20BC2=20

⇔ BC=√20

31 tháng 7 2019

Ta có: \(S_{AHC}=\frac{AH.AC}{2}=96\left(cm^2\right)\Rightarrow AH.AC=192cm\)(1)

\(S_{ABH}=\frac{AH.BH}{2}=54\left(cm^2\right)\Rightarrow AH.BH=108cm\)(2)

Từ (1) và (2) \(\Rightarrow AH.BH.AH.HC=20736\)

Mà: AH2=BH.CH

    => AH2.AH2=BH.CH.AH2

   <=> AH4=20736

    => AH=12cm

    => BH=9cm ; CH=16cm

      Vậy BC=25cm

20 tháng 6 2017

3) Theo hệ thức lượng trong tam giác vuông, ta có:

\(AB^2=BH.HC\)

\(AC^2=CH.HC\)

\(\Rightarrow\)\(\dfrac{AB^2}{AC^2}=\dfrac{BH.BC}{CH.BC}\Leftrightarrow\)\(\dfrac{9}{49}=\dfrac{BH}{CH}\)

\(\Rightarrow9CH=49BH\left(1\right)\)

Ta có: \(BH.CH=AH^2=42^2=1764\)

\(\Rightarrow CH=\dfrac{1764}{BH}\left(2\right)\)

\(\dfrac{\left(1\right)}{\left(2\right)}\Leftrightarrow\dfrac{9CH}{CH}=\dfrac{49BH}{\dfrac{1764}{BH}}\Leftrightarrow9=\dfrac{BH^2}{36}\)

\(\Rightarrow BH=\sqrt{36.9}=18\left(cm\right)\)

\(\Rightarrow CH=\dfrac{1764}{18}=98\left(cm\right)\)

20 tháng 6 2017

Cảm ơn vì đã giúp đỡ nhưng trả lời muộn wa làm xong rồi...

AHIHI

9 tháng 9 2018

Bài 1 

a) \(BC=125\Rightarrow BC^2=15625\)

\(\frac{AB}{AC}=\frac{3}{4}\Rightarrow\frac{AB}{3}=\frac{AC}{4}\)từ đây ta có \(\frac{AB^2}{9}=\frac{AC^2}{16}\)

Áp dụng t/c dãy tỉ số bằng nhau ta có

\(\frac{AB^2}{9}=\frac{AC^2}{16}=\frac{AB^2+AC^2}{25}=\frac{BC^2}{25}=\frac{15625}{25}=625\)

\(\frac{AB^2}{9}=625\Rightarrow AB=75\)

\(\frac{AC^2}{16}=625\Rightarrow AC=100\)

Áp dụng hệ thức lượng trong tam giác vuông ta có 

\(AB^2=BH\cdot BC\Rightarrow BH=\frac{AB^2}{BC}=\frac{5625}{125}=45\)

\(AC^2=CH\cdot BC\Rightarrow CH=\frac{AC^2}{BC}=\frac{10000}{125}=80\)

b.c) làm tương tự cũng áp dụng HTL trong tam giác vuông

Bài 2

Hình bạn tự vẽ

Ta có \(EH\\ AC\left(EH\perp AB;AC\perp AB\right)\Rightarrow\frac{BE}{AB}=\frac{BH}{BC}\Rightarrow BE=\frac{AB\cdot BH}{BC}\Rightarrow BE^2=\frac{AB^2\cdot BH^2}{BC^2}\)

\(\Leftrightarrow BE^2=\frac{BH\cdot BC\cdot BH^2}{BC^2}=BH^3\)

Bài 3 Đề bài này không đủ dữ kiện tính S của ABC

12 tháng 9 2018

Cám ơn cậu nhaaaaa

3 tháng 9 2020

Hình vẽ chung cho cả ba bài.

Bài 1:

\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{15^2}+\frac{1}{20^2}=\frac{1}{144}\)

\(\Rightarrow AH^2=144\Rightarrow AH=12\)

\(BH=\sqrt{AB^2-AH^2}=\sqrt{15^2-12^2}=\sqrt{81}=9\)

\(CH=\sqrt{AC^2-AH^2}=\sqrt{20^2-12^2}=\sqrt{256}=16\)

\(\Rightarrow BC=BH+CH=9+16=25\)

Bài 2,3 bạn nhìn hình vẽ và sử dụng hệ thức lượng để tính tiếp như bài 1.

3 tháng 9 2020

Bài 2:                                                    Bài giải

Đặt BH = x (0 < x < 25) (cm) => CH = 25 - x (cm)

Ta có : \(AH^2=BH\cdot CH\text{ }\Rightarrow\text{ }x\left(25-x\right)=144\text{ }\Rightarrow\text{ }x^2-25x+144=0\)

\(\left(x-9\right)\left(x-16\right)=0\text{ }\Rightarrow\orbr{\begin{cases}x=9\\x=16\end{cases}}\left(tm\right)\)

Nếu BH = 9 cm thì CH = 16 cm \(\Rightarrow\text{ }AB=\sqrt{AH^2+BH^2}=\sqrt{9^2+12^2}=15\text{ }\left(cm\right)\)

\(AC=\sqrt{AH^2+CH^2}=\sqrt{12^2+16^2}=20\text{ }\left(cm\right)\)

Nếu BH = 16 cm thì CH = 9 cm

\(\Rightarrow\text{ }AB=\sqrt{AH^2+BH^2}=\sqrt{12^2+16^2}=20\text{ }\left(cm\right)\)

\(AC=\sqrt{AH^2+CH^2}=\sqrt{9^2+12^2}=15\text{ }\left(cm\right)\)

21 tháng 9 2019

Bài 2:

Xét \(\Delta ABC\)có \(\widehat{A}=90^o\)\(AH\perp BC\)

\(\Rightarrow AH^2=HB.HC\)(Hệ thức lượng)

\(AH^2=25.64\)

\(AH=\sqrt{1600}=40cm\)

Xét \(\Delta ABH\)\(\widehat{H}=90^o\)

\(\Rightarrow\tan B=\frac{AH}{BH}\)\(=\frac{40}{25}=\frac{8}{5}\)

\(\Rightarrow\widehat{B}\approx58^o\)

Xét \(\Delta ABC\)có \(\widehat{A}=90^o\)

\(\Rightarrow\widehat{B}+\widehat{C}=90^o\)

\(58^o+\widehat{C}=90^o\)

\(\Rightarrow\widehat{C}\approx90^o-58^o\)

\(\widehat{C}\approx32^o\)

Bài 1: Cho tam giác ABC vuông tại A, đường cao AH, có cạnh BC dài \(\sqrt{11}cm\) và \(\sqrt{7}.CH=\sqrt{5}.BH\)Tính gần đúng chu vi tam giác ABC.Bài 2: Một mảnh bìa có dạng tam giác cân ABC, với AB = AC = 25cm và BC = 14cm. Làm thế nào để cắt từ mảnh bìa đó ra thành hình chữ nhật MNPQ có diện tích bằng \(\dfrac{1}{17}\) diện tích tam giác ABC. Trong đó M, N thuộc cạnh BC còn P, Q tương ứng thuộc các cạnh...
Đọc tiếp

Bài 1: Cho tam giác ABC vuông tại A, đường cao AH, có cạnh BC dài \(\sqrt{11}cm\) và \(\sqrt{7}.CH=\sqrt{5}.BH\)Tính gần đúng chu vi tam giác ABC.

Bài 2: Một mảnh bìa có dạng tam giác cân ABC, với AB = AC = 25cm và BC = 14cm. Làm thế nào để cắt từ mảnh bìa đó ra thành hình chữ nhật MNPQ có diện tích bằng \(\dfrac{1}{17}\) diện tích tam giác ABC. Trong đó M, N thuộc cạnh BC còn P, Q tương ứng thuộc các cạnh AC, AB.

Bài 3: Cho \(B=31+\dfrac{27}{15+\dfrac{7}{2008}}\) Tìm dãy số  \(b_0,b_1,b_2,...,b_n\) biết \(B=b_o+\dfrac{1}{b_1+\dfrac{1}{\dfrac{..........}{b_{n-1}+\dfrac{1}{b_n}}}}\)

Bài 4: Cho tam giác ABC, trên cạnh AB, AC, BC lần lượt lấy các điểm M, L, K sao cho tứ giác KLMB là hình bình hành. Biết \(S_{AML}=\text{42,7283}cm^2\)\(S_{KLC}=51,4231cm^2\) . Tính diện tích tam giác ABC.

Cứu mình với mọi người ơi!!!

2
31 tháng 7 2017

  4. Dễ thấy  \(\Delta AML\approx\Delta LKC\left(g-g\right)\)

\(\Rightarrow\frac{AL}{LC}=\sqrt{\frac{S_{\Delta AML}}{S_{\Delta LKC}}}=\sqrt{\frac{42.7283}{51.4231}}\approx0.9115461896\)

\(\Rightarrow\frac{AL}{AC}=\frac{0.9115461896}{0.9115461896+1}=0.476863282\)

Lại có  \(\Delta AML\approx\Delta ABC\left(g-g\right)\)

\(\Rightarrow\frac{S_{AML}}{S_{ABC}}=\left(\frac{AL}{AC}\right)^2=0.476863282^2=0.2273985897\)

\(\Rightarrow S_{\Delta ABC}=\frac{S_{\Delta AML}}{0.2273985897}=\frac{42.7283}{0.2273985897}\approx187.9\left(cm^2\right)\)

31 tháng 7 2017

1. Ta có  \(\frac{BH}{CH}=\frac{\sqrt{7}}{\sqrt{5}}\Rightarrow BH=\frac{\sqrt{7}}{\sqrt{5}}CH\)

Mặt khác  \(BC=\sqrt{11}\Rightarrow BH+CH=11\) 

\(\Rightarrow\frac{\sqrt{7}}{\sqrt{5}}CH+CH=11\)

\(\Leftrightarrow CH=\frac{-55+11\sqrt{35}}{2}\)  và  \(BH=\frac{77-11\sqrt{35}}{2}\)

Có BH, CH và BC tính đc AB, AC  \(\left(AB=\sqrt{BH.BC};AC=\sqrt{CH.BC}\right)\)

Từ đó tính đc chu vi tam giác ABC.

2. Để cj gửi hình qua gmail cho

3. Chỉ còn cách làm từng bước thôi e

\(B=31+\frac{27}{\frac{30127}{2008}}=31+\frac{54216}{30127}=32+\frac{24089}{30127}\)

Để viết liên phân số, ta bấm phím tìm thương và số dư:

(Mỗi số b1, b2, b3, ..., bn-1 chính là thương; số chia của phép chia trước là số bị chia của phép chia sau, còn số dư của phép chia trước là số chia của phép chia sau, nhớ nhá)

- B1: Tìm thương và số dư của 30127 cho 24089, thương là 1, dư 6038, viết  \(B=32+\frac{1}{1+...}\)

- B2: Tìm thương và số dư của 24089 cho 6038, thương là 3, dư 5975, viết  \(B=32+\frac{1}{1+\frac{1}{3+...}}\)

- B3: Tìm thương và số dư của 6038 cho 5975, thương là 1, dư 63, viết  \(B=32+\frac{1}{1+\frac{1}{3+\frac{1}{1+...}}}\)

- B4: Tìm thương và số dư của 5975 cho 63, thương là 94, dư 53, viết  \(B=32+\frac{1}{1+\frac{1}{3+\frac{1}{1+\frac{1}{94+...}}}}\)

...

Cứ làm như vậy, đến khi số dư là 1 thì dừng lại, phân số cuối cùng  \(\frac{1}{b_n}\) thì bn chính là số chia cuối cùng, bn = 3

Kết quả:  \(B=32+\frac{1}{1+\frac{1}{3+\frac{1}{1+\frac{1}{94+\frac{1}{1+\frac{1}{5+\frac{1}{3+\frac{1}{3}}}}}}}}\)