K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: AB là đường trung trực của EM(gt)

⇒A nằm trên đường trung trực của EM

hay AE=AM(tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: AC là đường trung trực của MF(gt)

⇒A nằm trên đường trung trực của FM

hay AM=AF(tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra AE=AF

hay A nằm trên đường trung trực của EF(tính chất đường trung trực của một đoạn thẳng)

b) Ta có: AB là đường trung trực của EM(gt)

⇒B nằm trên đường trung trực của EM

hay BE=BM(tính chất đường trung trực của một đoạn thẳng)(3)

Ta có: AC là đường trung trực của MF(gt)

⇒C nằm trên đường trung trực của FM

hay CM=CF(tính chất đường trung trực của một đoạn thẳng)(4)

Ta có: BM+CM=BC(M nằm giữa B và C)(5)

Từ (3), (4) và (5) suy ra BC=BE+CF(đpcm)

c) Xét ΔABE và ΔABM có

AE=AM(cmt)

AB là cạnh chung

BE=BM(cmt)

Do đó: ΔABE=ΔABM(c-c-c)

\(\widehat{EAB}=\widehat{BAM}\)(hai góc tương ứng)

mà tia AB nằm giữa hai tia AE,AM

nên AB là tia phân giác của \(\widehat{EAM}\)

hay \(\widehat{EAM}=2\cdot\widehat{BAM}\)(6)

Xét ΔAMC và ΔAFC có

AM=AF(cmt)

AC chung

MC=CF(cmt)

Do đó: ΔAMC=ΔAFC(c-c-c)

\(\widehat{MAC}=\widehat{FAC}\)(hai góc tương ứng)

mà tia AC nằm giữa hai tia AF,AM

nên AC là tia phân giác của \(\widehat{FAM}\)

hay \(\widehat{FAM}=2\cdot\widehat{CAM}\)(7)

Ta có: \(\widehat{BAM}+\widehat{CAM}=\widehat{BAC}\)(tia AM nằm giữa hai tia AB,AC)

hay \(\widehat{BAM}+\widehat{CAM}=60^0\)(8)

Ta có: \(2\cdot\widehat{BAM}+2\cdot\widehat{CAM}=\widehat{EAM}+\widehat{FAM}\)

hay \(2\cdot\left(\widehat{BAM}+\widehat{CAM}\right)=\widehat{EAM}+\widehat{FAM}\)(9)

Từ (6),(7),(8) và (9) suy ra:

\(\widehat{EAM}+\widehat{FAM}=120^0\)(10)

Ta có: \(\widehat{EAM}+\widehat{FAM}=\widehat{FAE}\)(tia AM nằm giữa hai tia AE,AF)(11)

Từ (10) và (11) suy ra: \(\widehat{FAE}=120^0\)

Xét ΔAEF có AE=AF(cmt)

nên ΔAEF cân tại A(định nghĩa tam giác cân)

\(\widehat{AEF}=\widehat{AFE}=\frac{180^0-\widehat{EAF}}{2}\)(số đo của các góc ở đáy trong ΔAEF)

hay \(\widehat{AEF}=30^0\); \(\widehat{AFE}=30^0\)

Vậy: \(\widehat{FAE}=120^0\); \(\widehat{AEF}=30^0\); \(\widehat{AFE}=30^0\)

21 tháng 3 2020

Bạn tự vẽ hình nhé!
a) Ta có: AB là trung trực của ME => AE=AM (1)

Tương tự AC cũng là trung trự của MF => AF=AM (2)

(1)(2) => AE=AF

Chứng tỏ trung trực của EF đi qua A

b) Ta có: BE=BM (AB là trung trực của EM)

Tương tự CF=CM mà BM+MC=BC

=> BE+CF=BC

14 tháng 4 2023

d là j a

 

22 tháng 3 2020

d) A là trung điểm của EF khi 3 điểm E,A,F thẳng hàng và AE=AI

Do đó: \(\widehat{BAC}=90^o\)

Nhận xét: Trường hợp tam giác đã cho có 1 góc tù các đường trung trực của 2 cạnh cắt nhau tại 1 điểm ta cũng có bài toán kết luận tương tự

Nguồn: Hải Ah

28 tháng 5 2020

Giúp mình vâu abc lun đi bạn

a) Ta có AB là trung trực của ME và AC là trung trực của MF. Vì góc A = 60 độ, nên ta có góc MEF = góc MFA = 30 độ. Do đó, tam giác MEF là tam giác đều. Khi đó, trung trực của EF sẽ đi qua trung điểm của cạnh EF, tức là đi qua A.

b) Ta có AB là trung trực của ME và AC là trung trực của MF. Vì tam giác MEF là tam giác đều, nên EM = MF. Mà AB là trung trực của ME và AC là trung trực của MF, nên AM = BM và AM = CM. Từ đó, ta có BE + CF = BM + CM = BC.

c) Vì tam giác MEF là tam giác đều, nên góc MEF = góc MFE = góc EFM = 60 độ. Ta có góc AEF = góc MEF - góc MEA = 60 độ - 30 độ = 30 độ. Tương tự, ta có góc AFE = 30 độ.

d) Ta có AB là trung trực của ME và AC là trung trực của MF. Vì góc A = 60 độ, nên góc MEF = góc MFA = 30 độ. Khi đó, ta có góc MEF = góc MFE = 30 độ. Vì tam giác MEF là tam giác đều, nên góc EFM = góc MEF = 30 độ. Do đó, góc IMK = góc EFM = 30 độ. Ta cũng có góc AIM = góc AEM = 30 độ. Vậy MA là phân giác góc IMK.

e) Để A là trung điểm của EF, ta cần tam giác ABC là tam giác đều.

a: AB là trung trực của ME

=>AE=AM và BM=BE

AC là trung trực của MF

=>AM=AF và CM=CF

AE=AM

AM=AF

=>AE=AF
=>A nằm trên trung trực của EF

b: BE+CF

=BM+CM

=BC

c:ΔAEM cân tại A

mà AB là trung trực

nên AB là phân giác của góc EAM(1)

ΔAMF cân tại A

mà AC là đường cao

nên AC là phân giác của góc MAF(2)

Từ (1), (2) suy ra góc EAF=2*(góc BAM+góc CAM)

=>góc EAF=2*60=120 độ

ΔAEF cân tại A

=>góc AEF=góc AFE=(180-120)/2=30 độ

d: Xét ΔAEI và ΔAMI có

AE=AM

góc EAI=góc MAI

AI chung

=>ΔAEI=ΔAMI

=>góc AEI=góc AMI

Xét ΔAMK và ΔAFK có

AM=AF

góc MAK=góc FAK

AK chung

=>ΔAMK=ΔAFK

=>góc AMK=góc AFK

góc AMK=góc AFE

góc AMI=góc AEF

mà góc AFE=góc AEF

nên góc AMK=góc AMI

=>MA là phân giác của góc IMK

e: A là trung trực của EF

=>E,A,F thẳng hàng

=>góc EAF=180 độ

=>góc BAC=180/2=90 độ

27 tháng 4 2022

undefined

-------- Chúc cậu học tốt --------

 

 

27 tháng 4 2022

camon bạn iu

 

16 tháng 11 2021

a) ˆIAC=ˆBAK (=140o)IAC^=BAK^ (=140o)

ΔIAC=ΔBAKΔIAC=ΔBAK (c.g.c) ⇒IC=BK⇒IC=BK.

b) Gọi D là giao điểm của AB và IC, gọi E là giao điểm của IC và BK.

Xét ΔAIDΔAID và ΔEBDΔEBD, ta có ˆAID=ˆEBDAID^=EBD^ (do ΔIAC=ΔBAK)ΔIAC=ΔBAK), (đối đỉnh) nên ˆIAD=ˆBEDIAD^=BED^.

Do ˆIAD=90oIAD^=90o nên ˆBED=90oBED^=90o. Vậy IC⊥BKIC ⊥ BK.

Bài 1: Cho tam giác ABC cân (AB=AC), O là giao điểm 3 trung trực 2 cạnh của tam giác ABC (O nằm trong tam giác). Trên tia đối của các tia AB và CA ta lấy 2 điểm M, N sao cho AM=CN. Chứng minh:a) Góc OAB = góc OCAb) Tam giác AOM = tam giác CONc) Hai trung trực OM, ON cắt nhau tại I. Chứng minh OI là tia phân giác của góc MONBài 2: Cho góc nhọn xOy; trên tia Ox lấy 2 điểm A và B (A nằm giữa O, B). Trên Oy lấy 2 điểm C, D (C...
Đọc tiếp

Bài 1: Cho tam giác ABC cân (AB=AC), O là giao điểm 3 trung trực 2 cạnh của tam giác ABC (O nằm trong tam giác). Trên tia đối của các tia AB và CA ta lấy 2 điểm M, N sao cho AM=CN. Chứng minh:
a) Góc OAB = góc OCA
b) Tam giác AOM = tam giác CON
c) Hai trung trực OM, ON cắt nhau tại I. Chứng minh OI là tia phân giác của góc MON
Bài 2: Cho góc nhọn xOy; trên tia Ox lấy 2 điểm A và B (A nằm giữa O, B). Trên Oy lấy 2 điểm C, D (C nằm giữa O, D) sao cho OA=OC và OB=OD. Chứng minh:
a) Tam giác AOD = tam giác COB
b) Tam giác ABD = tam giác CDB
c) Gọi I là giao điểm của AD và BC. Chứng minh IA=IC; IB=ID
Bài 3: Cho tam giác ABC. Qua A kẻ đường thẳng song song với BC, qua C kẻ đường thẳng song song với AB, hai đường thẳng này cắt nhau tại D
a) Chứng minh: AD=BC và AB=DC
b) Gọi M, N lần lượt là trung điểm của BC và AD. Chứng minh: AM=CN
c) Gọi O là giao điểm của AC và BD. Chứng minh: OA=OC và OB=OD
d) Chứng minh: M, O, N thẳng hàng
Bài 4: Cho góc xOy = 60 độ. Vẽ Oz là tia phân giác của góc xOy 
a) Tính góc xOy?
b) Trên Ox lấy điểm A và trên Oy lấy điểm B sao cho OA=OB. Tia Oz cắt AB tại I. Chứng minh tam giác OIA = tam giác OIB
c) Chứng minh OI vuông góc AB
d) Trên tia Oz lấy điểm M. Chứng minh MA=MB
e) Qua M vẽ đường thẳng song song với AB cắt tia Ox, Oy lần lượt tại C và D. Chứng minh BD=AC

       Mọi ng giúp mình giải bài này nhé! Cảm ơn mn <3

7
31 tháng 5 2018

Mình nghĩ khó mà có người giải hết chỗ bài tập đấy của bạn, nhiều quá

31 tháng 5 2018

3/ (Bạn tự vẽ hình giùm)

a/ \(\Delta ABC\)và \(\Delta ADC\)có:

\(\widehat{BAC}=\widehat{ACD}\)(AB // DC; ở vị trí so le trong)

Cạnh AC chung

\(\widehat{CAD}=\widehat{ACB}\)(AB // DC; ở vị trí so le trong)

=> \(\Delta ABC\)\(\Delta ADC\)(g. c. g)

=> AD = BC (hai cạnh tương ứng)

và AB = DC (hai cạnh tương ứng)

b/ Ta có AD = BC (cm câu a)

và \(AN=\frac{1}{2}AD\)(N là trung điểm AD)

và \(MC=\frac{1}{2}BC\)(M là trung điểm BC)

=> AN = MC

Chứng minh tương tự, ta cũng có: BM = ND

\(\Delta AMB\)và \(\Delta CND\)có:

BM = ND (cmt)

\(\widehat{ABM}=\widehat{NDC}\)(AB // CD; ở vị trí so le trong)

AB = CD (\(\Delta ABC\)\(\Delta ADC\))

=> \(\Delta AMB\)\(\Delta CND\)(c. g. c)

=> \(\widehat{BAM}=\widehat{NCD}\)(hai góc tương ứng)

và \(\widehat{BAC}=\widehat{ACN}\)(\(\Delta ABC\)\(\Delta ADC\))

=> \(\widehat{BAC}-\widehat{BAM}=\widehat{ACN}-\widehat{NCD}\)

=> \(\widehat{MAC}=\widehat{ACN}\)(1)

Chứng minh tương tự, ta cũng có \(\widehat{AMC}=\widehat{ANC}\)(2)

và AN = MC (cmt) (3)

=> \(\Delta MAC=\Delta NAC\)(g, c. g)

=> AM = CN (hai cạnh tương ứng) (đpcm)

c/ \(\Delta AOB\)và \(\Delta COD\)có:

\(\widehat{BAO}=\widehat{OCD}\)(AB // DC; ở vị trí so le trong)

AB = CD (cm câu a)

\(\widehat{ABO}=\widehat{ODC}\)(AD // BC; ở vị trí so le trong)

=> \(\Delta AOB\)\(\Delta COD\)(g. c. g)

=> OA = OC (hai cạnh tương ứng)

và OB = OD (hai cạnh tương ứng)

d/ \(\Delta ONA\)và \(\Delta MOC\)có:

\(\widehat{AON}=\widehat{MOC}\)(đối đỉnh)

OA = OC (O là trung điểm AC)

\(\widehat{OAN}=\widehat{OCM}\)(AM // NC; ở vị trí so le trong)

=> \(\Delta ONA\)\(\Delta MOC\)(g. c. g)

=> ON = OM (hai cạnh tương ứng)

=> O là trung điểm MN

=> M, O, N thẳng hàng (đpcm)