K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2016

 Bài 1 :

a. AB//CD  (ABCD là hình bình hành)                                                                                                                                              M thuộc AB                                                                                                                                                                                  N thuộc CD                                                                                                                                                                              => BM // DN

Xét tứ giác AMCN có:

MB=DN (gt) 

BM// DN

=> tứ giác AMCN là hình bình hành

b. Gọi giao điểm của AC và BD là O

=> O là trung điểm của AC và BD (tính chất hình bình hành) 

 Hình bình hành MBND có

O là trung điểm của BD

MN là đường chéo hình bình hành MBND

O là trung điểm MM

=> MN đi qua O

=> AC,BD,MN đồng quy tại một điểm

c.

10 tháng 10 2016

Bài 2 :

a. AB = CD (ABCD là hình bình hành) 

Mà AB = BE (A đối xứng E qua B) 

=> CD=BE 

AB // CD (ABCD là hình bình hành) 

Mà E thuộc AC

=> CD//BE 

Xét tứ giác DBEC:

CD=BE (CM) 

CD//BE (CM) 

=> DBEC là hình bình hành

b.

a: Xét tứ giác AMCN có

AM//CN

AM=CN

Do đó: AMCN là hình bình hành

b: ABCDlà hình bình hành

nên AC cắt BD tại trung điểm của mỗi đường

=>O là trung điểm của AC

AMCN là hình bình hành

nên AC cắt MN tại trung điểm của mỗi đường

=>M đối xứng N qua O

22 tháng 9 2020

1.

AB=CD (cặp cạnh đối hbh)

AM=AB/2 và CN=CD/2

=> AM=CN (1)

AM thuộc AB; CN thuộc CD mà AB//CD => AM//CN (2)

Từ (1) và (2) => AMCN là hbh(Tứ giác có một cặp cạnh đối // và = nhau thì tứ giác đó là hbh)

2.

a. M là trung điểm AB; N là trung điểm AC => MN là đường trung bình của tgABC 

=> MN//BC => MN//BP và MN=BP=BC/2

=> BMNP là hbh (lý do như bài 1)

b. Ta có BMNP là hbh và ^B=90 => BMNP là HCN

\(BC=\sqrt{AC^2-AB^2}=\sqrt{5^2-3^2}=4cm.\)

Từ kq câu a => MN=BC/2=4/2=2 cm

C/m tương tự câu a có NP là đường trung bình của tg ABC => NP=AB/2=3/2=1,5 cm

Chu vi BMNP là

(2+1,5)x2=7 cm

2 tháng 11 2015

a)Ta có O giao điểm AC và BD trong hình bình hành ABCD (gt)

=> O là trung điểm AC và BD.

=> OD=OB

Mà OM=MD=\(\frac{1}{2}\)OD; ON=BN=\(\frac{1}{2}\)OB => OM=ON=OD=OB.

Xét hình bình hành ABCD có O trung điểm AC (hbh ABCD) và O trung điểm MN (OM=ON)

=> đpcm (điều phải chứng minh)

b) C/m tam giác ACE=ACF (cgc)(AC chung; \(\angle EAC=\angle FCA\) do song song; và cũng như vây với \(\angle ECA=\angle CAF\))

=>AE=FC mà \(AE \parallel FC\) do ăn theo hbh AMCN => đpcm

10 tháng 9 2020

a/ 

AB=CD (cạnh đối của hbh)

AM=AB/2; CN=CD/2 

=> AM=CN (1)

AM thuộc AB; CN thuộc CD mà AB//CD => AM//CN (2)

Từ (1) và (2) => AMCN là hbh (Tứ giác có cặp cạnh đối // và = nhau là hbh)

b/ Gọi O là giao của AC và BD => O là trung điểm của AC và BD (hai đường chéo hbh cắt nhau tại trung điểm mỗi đường)

Xét tứ giác BNDM có

MB thuộc AB; DN thuộc CD mà AB//CD => MB//DN

AB=CD (cmt) mà MB=AB/2 và DN=CD/2 => MB=DN

=> Tứ giác BNDM là hbh

Gọi O' là giao của MN và BD => O' là trung điểm của BD

Mà O cũng là trung điểm của BD => O trùng O' => AC; BD; MN đồng quy

c/

AM//DN vì vậy ko cắt nhau bạn xem lại đề bài

10 tháng 9 2020

a) ABCD là hình bình hành nên AB//CD, AB=CD

Vì M,N lần lượt là trung điểm AB,CD nên \(\hept{\begin{cases}AM//CN\\AM=CN\left(=\frac{1}{2}AB=\frac{1}{2}DC\right)\end{cases}}\)

=> ANCM là hình bình hành.

b) Gọi O là giao điểm AC và BD

Mà ABCD là hình bình hành nên O trung điểm AC và BD

Vì ANCM là hình bình hành nên MN và AC cắt nhau tại trung điểm AC

=> MN qua O ---> ĐPCM

c) Câu này đề hơi sai nha, AM//DN nên ko có chuyện cắt nhau nha !!

Ở đây mình xin sửa đề lại là AN cắt DM tại E và CM cắt BN tại F.

Xét NE là đường trung bình tam giác DMC\(\Rightarrow\hept{\begin{cases}NE//MC\\NE=\frac{1}{2}MC\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}NE//MF\\NE=MF\left(=\frac{1}{2}MC\right)\end{cases}}\)---> Vậy NEMF là hình bình hành.