Bài 2. (6,5 điểm) Cho hình chữ nhật ABCD. Ve AH 1 BD tại H. Các diểm M, N...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
27 tháng 3 2019

A B C D M N H K

Kẻ MK//AB (\(K\in AH\)) \(\Rightarrow MK\perp AD\) , mà \(AH\perp DM\Rightarrow K\) là trực tâm tam giác \(AMD\Rightarrow DK\perp AM\)

Áp dụng Talet: \(\frac{HM}{BH}=\frac{MK}{AB}\)

\(\frac{BM}{MH}=\frac{CN}{ND}\Leftrightarrow\frac{BM}{MH}+1=\frac{CN}{ND}+1\Leftrightarrow\frac{BH}{MH}=\frac{CD}{ND}\Leftrightarrow\frac{MH}{BH}=\frac{ND}{CD}\)

\(\Rightarrow\frac{MK}{AB}=\frac{ND}{CD}\Rightarrow MK=ND\) (do AB=CD)

Mà KM//AB//CD \(\Rightarrow MKDN\) là hbh (tứ giác có cặp cạnh đối song song và bằng nhau)

\(\Rightarrow DK//MN\Rightarrow MN\perp AM\Rightarrow\widehat{AMN}=90^0\)

a: Xét ΔHAB có

M là trung điểm của HA

N là trung điểm của HB

Do đó: MN là đường trung bình

=>MN//AB và MN=AB/2

=>MN//KC và MN=KC

=>NCKM là hình bình hành

b; Xét ΔBMC có

BH là đường cao

MN là đường cao

BH cắt MN tại N

DO đó:N là trực tâm

=>CN vuông góc với BM

=>BM vuông góc với MK

hay góc BMK=90 độ

22 tháng 12 2019

c) PQ ⊥ BD (gt). Xét các tam giác vuông POB và QOD có:

∠POB = ∠QOD∠ (đối đỉnh),

OB = OD

∠PBO = ∠QDO (so le trong).

Do đó ΔPOB = ΔQOD (g.c.g) ⇒ BP = DQ

Lại có BP // DQ nên tứ giác PBQD là hình bình hành

Mặt khác PBQD có hai đường chéo vuông góc nên là hình thoi.

23 tháng 8 2019

a) Ta có AD = BC; AD // BC (gt), AM = CN (gt)

⇒ AD – AM = BC – CN

Hay DM = BN

Lại có DM // BN

Do đó MNDN là hình bình hành ⇒ BM // DN