K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 9 2021

a)\(x\left(x^2-0,25\right)=0\)

TH1:\(x=0\)        TH2:\(x^2-0,25=0\)

                                      \(x^2=0,25=>x=0,5\)

Vậy x E \(\hept{0,5;0}\)

                                       

25 tháng 10 2021

\(a,x^2-5x\)

\(=x\left(x-5\right)\)

\(b,5x\left(x+5\right)+4x+20\)

\(=5x\left(x+5\right)+4\left(x+5\right)\)

\(=\left(5x+4\right)\left(x+5\right)\)

\(c,7x\left(2x-1\right)-4x+2\)

\(=7x\left(2x-1\right)-2\left(2x-1\right)\)

\(=\left(7x-2\right)-\left(2x-1\right)\)

25 tháng 10 2021

\(d,x^2-16+2\left(x+4\right)\)

\(=x^2-16+2x+8\)

\(=x\left(x-2\right)-8\) ( Ý này thì k chắc lắm, sai thông cảm :)) ) 

\(e,x^2-10x+9\)

\(=x^2-x-9x+9\)

\(=x\left(x-1\right)-9\left(x-1\right)\)

\(=\left(x-9\right)\left(x-1\right)\)

\(f,\left(2x-1\right)^2-\left(x-3\right)^2=0\) ( mk đoán bài này là tìm x, sai thì bảo mk để mk sửa nhé ) 

\(\Rightarrow\left(2x-1\right)^2=\left(x-3\right)^2\)

\(\Leftrightarrow\pm\left(2x-1\right)=\pm\left(x-3\right)\)

\(\Rightarrow\hept{\begin{cases}2x-1=x-3\\-\left(2x-1\right)=-\left(x-3\right)\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}2x-1-x+3=0\\-2x+1-x+3=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x+2=0\\-3x+4=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=\left(-2\right)\\x=\frac{4}{3}\end{cases}}\)

Vậy ... 

19 tháng 8 2018

Bài 4 : Tìm x biết:

a, 4x2 - 49 = 0

\(\Leftrightarrow\) (2x)2 - 72 = 0

\(\Leftrightarrow\) (2x - 7)(2x + 7) = 0

\(\Leftrightarrow\left\{{}\begin{matrix}2x-7=0\\2x+7=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{7}{2}\\x=-\dfrac{7}{2}\end{matrix}\right.\)

b, x2 + 36 = 12x

\(\Leftrightarrow\) x2 + 36 - 12x = 0

\(\Leftrightarrow\) x2 - 2.x.6 + 62 = 0

\(\Leftrightarrow\) (x - 6)2 = 0

\(\Leftrightarrow\) x = 6

19 tháng 8 2018

e, (x - 2)2 - 16 = 0

\(\Leftrightarrow\) (x - 2)2 - 42 = 0

\(\Leftrightarrow\) (x - 2 - 4)(x - 2 + 4) = 0

\(\Leftrightarrow\) (x - 6)(x + 2) = 0

\(\Leftrightarrow\left\{{}\begin{matrix}x-6=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=6\\x=-2\end{matrix}\right.\)

f, x2 - 5x -14 = 0

\(\Leftrightarrow\) x2 + 2x - 7x -14 = 0

\(\Leftrightarrow\) x(x + 2) - 7(x + 2) = 0

\(\Leftrightarrow\) (x + 2)(x - 7) = 0

\(\Leftrightarrow\left\{{}\begin{matrix}x+2=0\\x-7=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\x=7\end{matrix}\right.\)

27 tháng 9 2017

\(a,2x^2-2xt-5x+5y\)

\(=\left(2x^2-5x\right)-\left(2xy-5y\right)\)

\(=x\left(2x-5\right)-y\left(2x-5\right)\)

\(=\left(2x-5\right)\left(x-y\right)\)

\(b,8x^2+4xy-2ax-ay\)

\(=\left(8x^2-2ax\right)+\left(4xy-ay\right)\)

\(=2x\left(4x-a\right)+y\left(4x-a\right)\)

\(=\left(4x-a\right)\left(2x+y\right)\)

\(c,x^3-4x^2+4x\)

\(=x^3-2x^2-2x^2+4x\)

\(=\left(x^3-2x^2\right)-\left(2x^2-4x\right)\)

\(=x^2\left(x-2\right)-2x\left(x-2\right)\)

\(=\left(x-2\right)\left(x^2-2x\right)=x\left(x-2\right)\left(x-2\right)\)

\(=x\left(x-2\right)^2\)

\(d,2xy-x^2-y^2+16\)

\(=-\left(x^2-2xy+y^2-16\right)\)

\(=-\left[\left(x-y\right)^2-4^2\right]\)

\(=-\left(x-y-4\right)\left(x-y+4\right)\)

\(e,x^2-y^2-2yz-z^2\)

\(=x^2-\left(y^2+2yz+z^2\right)\)

\(=x^2-\left(y+z\right)^2=\left(x-y-z\right)\left(x+y+z\right)\)

19 tháng 10 2020

a, \(x\left(x+1\right)-x\left(x-5\right)=6\Leftrightarrow x^2+x-x^2+5x=6\)

\(\Leftrightarrow x=1\)

b, \(4x^2-4x+1=0\Leftrightarrow\left(2x-1\right)^2=0\Leftrightarrow x=\frac{1}{2}\)

c, \(x^2-\frac{1}{4}=0\Leftrightarrow\left(x-\frac{1}{2}\right)\left(x+\frac{1}{2}\right)=0\Leftrightarrow x=\pm\frac{1}{2}\)

d, \(5x^2=20x\Leftrightarrow5x^2-20x=0\Leftrightarrow5x\left(x-4\right)=0\Leftrightarrow x=0;4\)

e, \(4x^2-9-x\left(2x-3\right)=0\Leftrightarrow4x^2-9-2x^2=3x\Leftrightarrow2x^2-9-3x=0\)

\(\Leftrightarrow\left(2x+3\right)\left(x-3\right)=0\Leftrightarrow x=-\frac{3}{2};3\)

f, \(4x^2-25=\left(2x-5\right)\left(2x+7\right)\Leftrightarrow\left(2x-5\right)\left(2x+5\right)-\left(2x-5\right)\left(2x+7\right)=0\)

\(\Leftrightarrow-2\left(2x+5\right)=0\Leftrightarrow x=-\frac{5}{2}\)

19 tháng 10 2020

a) x( x + 1 ) - x( x - 5 ) = 6

⇔ x2 + x - x2 + 5x = 6

⇔ 6x = 6

⇔ x = 1

b) 4x2 - 4x + 1 = 0

⇔ ( 2x - 1 )2 = 0

⇔ 2x - 1 = 0

⇔ x = 1/2

c) x2 - 1/4 = 0

⇔ ( x - 1/2 )( x + 1/2 ) = 0

⇔ \(\orbr{\begin{cases}x-\frac{1}{2}=0\\x+\frac{1}{2}=0\end{cases}}\Leftrightarrow x=\pm\frac{1}{2}\)

d) 5x2 = 20x

⇔ 5x2 - 20x = 0

⇔ 5x( x - 4 ) = 0

⇔ \(\orbr{\begin{cases}5x=0\\x-4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=4\end{cases}}\)

e) 4x2 - 9 - x( 2x - 3 ) = 0

⇔ ( 2x - 3 )( 2x + 3 ) - x( 2x - 3 ) = 0

⇔ ( 2x - 3 )( 2x + 3 - x ) = 0

⇔ ( 2x - 3 )( x + 3 ) = 0

⇔ \(\orbr{\begin{cases}2x-3=0\\x+3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{2}\\x=-3\end{cases}}\)

f) 4x2 - 25 = ( 2x - 5 )( 2x + 7 )

⇔ ( 2x - 5 )( 2x + 5 ) - ( 2x - 5 )( 2x + 7 ) = 0

⇔ ( 2x - 5 )( 2x + 5 - 2x - 7 ) = 0

⇔ ( 2x - 5 )(-2) = 0

⇔ 2x - 5 = 0

⇔ x = 5/2

27 tháng 6 2016

a )x2+2y2-2xy+2x-4y+2=0 
<=>x2-2x(y-1)+y2-2y+1+y2-2y+1=0 
<=>x2-2x(y-1)+(y-1)2+(y-1)2=0 
<=>(x-y+1)2+(y-1)2=0 
<=>x-y+1=0 va y-1=0 
<=>x=y-1 y=1 
<=>x=1-1=0 y=1

14 tháng 7 2017

a, 4x.(x - 2017 ) - x + 2017 = 0

\(\Leftrightarrow\) 4x ( x - 2017 ) - ( x - 2017 ) = 0

\(\Leftrightarrow\) ( x - 2017 ) ( 4x - 1 ) = 0

\(\Leftrightarrow\left[{}\begin{matrix}x-2017=0\\4x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2017\\x=\dfrac{1}{4}\end{matrix}\right.\)

Vậy phương trình có nghiệm x = 2017 hoặc x = \(\dfrac{1}{4}\) .

14 tháng 7 2017

b) \(\left(x+1\right)^2=x+1\)

\(\left(x+1\right)^2-\left(x+1\right)=0\)

\(\left(x+1\right)\left(x+1-x-1\right)=0\)

\(x+1=0\)

x = -1

c) \(x\left(x-5\right)-\left(4x-20\right)=0\)

\(x\left(x-5\right)-4\left(x-5\right)=0\)

\(\left(x-5\right)\left(x-4\right)=0\)

\(\left[{}\begin{matrix}x=5\\x=4\end{matrix}\right.\)

4 tháng 2 2017

a) x3+4x2+x-6=0

<=> x3+x2-2x+3x2+3x-6=0

<=>x(x2+x-2)+3(x2+x-2)=0

<=>(x+3)(x2+x-2)=0

<=>(x+3)(x2+2x-x-2)=0

<=>(x+3)[x(x+2)-(x+2)]=0

<=>(x+3)(x-1)(x+2)=0

=> x+3=0 hay

x-1=0 hay

x+2=0

<=> x=-3 hay x=1 hay x=-2

4 tháng 2 2017

b)x3-3x2+4=0

\(\Leftrightarrow x^3-4x^2+4x+x^2-4x+4=0\)

\(\Leftrightarrow x\left(x^2-4x+4\right)+\left(x^2-4x+4\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2-4x+4\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x-2\right)^2=0\)

\(\Rightarrow\left\{\begin{matrix}x+1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left\{\begin{matrix}x=-1\\x=2\end{matrix}\right.\)