\(\frac{2}{3}\sqrt{12x}+\sqrt{12x}-9=\frac{1}{3}\sqrt{3x}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2020

1) ĐK: \(x\ge0\)

PT \(\Leftrightarrow\frac{2}{3}\sqrt{12x}+\sqrt{12x}-\frac{1}{3}\sqrt{3x}=9\)

\(\Leftrightarrow\frac{5}{3}\sqrt{12x}-\frac{1}{3}\sqrt{3x}=9\)

\(\Leftrightarrow3\sqrt{3x}=9\) \(\Leftrightarrow x=3\left(TM\right)\)

Vậy \(x=3\)

2) ĐK: \(x\ge0\)

PT \(\Leftrightarrow7\sqrt{2x}=14\) \(\Leftrightarrow x=2\left(TM\right)\)

Vậy \(x=2\)

24 tháng 6 2019

\(dat:\sqrt{x-5}=a\Rightarrow\sqrt{4\left(x-5\right)}+\sqrt{x-5}-\frac{1}{3}=\sqrt{9\left(x-5\right)}\Rightarrow\sqrt{4}.a+a-\frac{1}{3}=\sqrt{9}.a\Rightarrow3a-\frac{1}{3}=3a\left(voli\right)\Rightarrow vonghiem\)

24 tháng 6 2019

câu a chắc đề như zầy pk bạn???

\(\sqrt{4x-20}+\sqrt{x-5}-\frac{1}{3}+\sqrt{9x-45}=4\)

\(pt\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}+3\sqrt{x-5}=\frac{13}{3}\)

\(\Leftrightarrow6\sqrt{x-5}=\frac{13}{3}\Rightarrow\sqrt{x-5}=\frac{13}{18}\Leftrightarrow x=\frac{1789}{324}\)

b)đề như này đúng ko bạn??

\(\sqrt{16-32x}-\sqrt{12x}=\sqrt{3x}+\sqrt{9-18x}\)

\(\Leftrightarrow4\sqrt{1-2x}-2\sqrt{3x}=\sqrt{3x}+3\sqrt{1-2x}\)

\(\Leftrightarrow\sqrt{1-2x}-3\sqrt{3x}=0\Leftrightarrow\sqrt{1-2x}=3\sqrt{3x}\)

\(\Leftrightarrow1-2x=27x\Leftrightarrow x=\frac{1}{29}\)

câu c\(\sqrt{4x-20}-3\sqrt{\frac{x-5}{9}}=\sqrt{1-x}\)

Xét điều kiện \(\left\{{}\begin{matrix}x\le1\\x\ge5\end{matrix}\right.\)không tồn tại số nào nằm trong khoảng này

Vậy pt trên vô nghiệm

29 tháng 10 2020

a) \(\text{Đ}K\text{X}\text{Đ}:\frac{3}{2}\le x\le\frac{5}{2}\)

Áp dụng BĐT Bunhiacopxki ta có:

\(VT=\sqrt{2x-3}+\sqrt{5-2x}\le\sqrt{2\left(2x-3+5-2x\right)}=2\)

Dấu '=' xảy ra khi \(\sqrt{2x-3}=\sqrt{5-2x}\Leftrightarrow x=2\)

Lại có: \(VP=3x^2-12x+14=3\left(x-2\right)^2+2\ge2\)

Dấu '=' xảy ra khi x=2

Do đó VT=VP khi x=2

29 tháng 10 2020

b) ĐK: \(x\ge0\). Ta thấy x=0 k pk là nghiệm của pt, chia 2 vế cho x ta có:

\(x^2-2x-x\sqrt{x}-2\sqrt{x}+4=0\Leftrightarrow x-2-\sqrt{x}-\frac{2}{\sqrt{x}}+\frac{4}{x}=0\)

\(\Leftrightarrow\left(x+\frac{4}{x}\right)-\left(\sqrt{x}+\frac{2}{\sqrt{x}}\right)-2=0\)

Đặt \(\sqrt{x}+\frac{2}{\sqrt{x}}=t>0\Leftrightarrow t^2=x+4+\frac{4}{x}\Leftrightarrow x+\frac{4}{x}=t^2-4\), thay vào ta có:

\(\left(t^2-4\right)-t-2=0\Leftrightarrow t^2-t-6=0\Leftrightarrow\left(t-3\right)\left(t+2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}t=3\\t=-2\end{cases}}\)

Đối chiếu ĐK  của t

\(\Rightarrow t=3\Leftrightarrow\sqrt{x}+\frac{2}{\sqrt{x}}=3\Leftrightarrow x-3\sqrt{x}+2=0\Leftrightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=1\end{cases}}\)

2 tháng 8 2017

ai trả lời dùm em cái ak. E cảm ơn nhiềuvui

6 tháng 10 2020

a.\(\sqrt{x-2}=\sqrt{4-x}\)

đk: \(\left\{{}\begin{matrix}x-2\ge0\\4-x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x\le4\end{matrix}\right.\Leftrightarrow2\le x\le4\)

pt đã cho tương đương với

\(x-2=4-x\)

\(\Leftrightarrow2x=6\Rightarrow x=3\left(TM\right)\)

b.\(\sqrt{x^2-8x+6}=x+2\)

đk: \(x+2\ge0\Rightarrow x\ge-2\)

pt đã cho tương đương với

\(x^2-8x+6=\left(x+2\right)^2\)

\(\Leftrightarrow x^2-8x+6=x^2+4x+4\)

\(\Leftrightarrow-12x=-2\Rightarrow x=\frac{1}{6}\left(TM\right)\)

c.\(\sqrt{2x-1}+5=\sqrt{8x-4}\)

\(\Leftrightarrow\sqrt{2x-1}+5=\sqrt{4\left(2x-1\right)}\)

\(\Leftrightarrow\sqrt{2x-1}+5=2\sqrt{2x-1}\)

\(\Leftrightarrow\sqrt{2x-1}=5\)

đk: \(2x-1\ge0\Leftrightarrow x\ge\frac{1}{2}\)

pt tương đương: \(2x-1=25\)

\(\Leftrightarrow2x=26\Rightarrow x=13\left(TM\right)\)

d.\(\sqrt{16-32x}-\sqrt{12x}=\sqrt{3x}+\sqrt{9-18x}\)

\(\Leftrightarrow\sqrt{16\left(1-2x\right)}-\sqrt{4.3x}=\sqrt{3x}+\sqrt{9\left(1-2x\right)}\)

\(\Leftrightarrow4\sqrt{1-2x}-2\sqrt{3x}+3\sqrt{1-2x}\)

\(\Leftrightarrow\sqrt{1-2x}=3\sqrt{3x}\)

đk: \(\left\{{}\begin{matrix}1-2x\ge0\\3x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le\frac{1}{2}\\x\ge0\end{matrix}\right.\Leftrightarrow0\le x\le\frac{1}{2}\)

pt tương đương: \(1-2x=9.3x\)

\(\Leftrightarrow29x=1\Rightarrow x=\frac{1}{29}\left(TM\right)\)

e. \(\sqrt{x^2-9}-\sqrt{4x-12}=0\)

đk: \(\left\{{}\begin{matrix}\left(x-3\right)\left(x+3\right)\ge0\\4x-12\ge0\end{matrix}\right.\Leftrightarrow x\ge3\)

pt đã cho tương đương với

\(\sqrt{\left(x-3\right)\left(x+3\right)}-\sqrt{4\left(x-3\right)}=0\)

\(\Leftrightarrow\sqrt{x-3}.\sqrt{x+3}-2\sqrt{x-3}=0\)

\(\Leftrightarrow\sqrt{x-3}.\left(\sqrt{x+3}-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-3}=0\\\sqrt{x+3}-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\Rightarrow x=3\left(TM\right)\\\sqrt{x+3}=2\Leftrightarrow x+3=4\Rightarrow x=1\left(KTM\right)\end{matrix}\right.\)

14 tháng 7 2019

1) \(x\ge\frac{1}{6}\) 

2.\(x\le0\)

3.\(4-5x\ge0\Leftrightarrow x\le\frac{4}{5}\) 

4.mọi x

22 tháng 8 2017

bÀI LÀM

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

22 tháng 8 2017

bÀI LÀM

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

14 tháng 7 2016

a) \(A=\sqrt{81}.\sqrt{\frac{9}{4}}+2\sqrt{16}-3=\sqrt{9^2}.\sqrt{\left(\frac{3}{2}\right)^2}+2\sqrt{4^2}-3=9.\frac{3}{2}+2.4-3=\frac{37}{2}\)

b) \(B=\sqrt{9-2\sqrt{14}}=\sqrt{\left(\sqrt{7}-\sqrt{2}\right)^2}=\sqrt{7}-\sqrt{2}\)

c) Không rút gọn được.

Bài 2 : Mình hướng dẫn thôi nhé ^^

a) \(M=x^2-10x+30=\left(x^2-10x+25\right)+5=\left(x-5\right)^2+5\ge5\)

b) \(N=4x^2-12x+1=\left[\left(2x\right)^2-12x+9\right]-8=\left(2x-3\right)^2-8\ge-8\)

c) \(P=x^2-x-1=\left(x^2-2.x.\frac{1}{2}+\frac{1}{4}\right)-\frac{1}{4}-1=\left(x-\frac{1}{2}\right)^2-\frac{5}{4}\ge-\frac{5}{4}\)

d) \(Q=16x^2-8x+3=\left[\left(4x\right)^2-8x+1\right]+2=\left(4x-1\right)^2+2\ge2\)

e) \(H=\frac{1}{9}x^2+3x-1=\left[\left(\frac{x}{3}\right)^2+2.\frac{x}{3}.\frac{9}{2}+\frac{81}{4}\right]-\frac{81}{4}-1=\left(\frac{x}{3}+\frac{9}{2}\right)^2-\frac{85}{4}\ge-\frac{85}{4}\)