Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{2}.2^n+4.2^n=9.2^5\Rightarrow2^n\left(\frac{1}{2}+4\right)=288\Rightarrow2^n.\frac{9}{2}=288\Rightarrow2^{n-2}.9=288\Rightarrow2^{n-2}=32\)(dấu "=>" số 3 bn sửa thành 2n-1.9=288=>2n-1=32 nha)
=>2n-1=25=>n-1=5=>n=5+1=6
vậy......
~~~~~~~~~~~~~~~
Bài 4
\(127^{23}< 128^{23}=\left(2^7\right)^{23}=2^{7.23}=2^{161}\)
\(513^{18}>512^{18}=\left(2^9\right)^{18}=2^{9.18}=2^{161}\)
Vì \(127^{23}< 2^{161}< 513^{18}\)nên \(127^{23}< 513^{18}\)
Khả năng của mình chỉ làm được 2 bài thôi. Các bạn thông cảm!
Bài 3
\(3^{n+2}-2^{n+2}+3^n-2^n=3^n.3^2-2^n.2^2+3^n-2^n.\)
\(=\left(3^n.9+3^n\right)-\left(2^n.4+2^n\right)=3^n.\left(9+1\right)-2^n\left(4+1\right)\)
\(=3^n.10-2^n.5=3^n.10-2^{n-1}.2.5=3^n.10-2^{n-1}.10=10\left(3^n-2^{n-1}\right).\)chia hết cho 10
b)
a=3n+1+3n-1=3n(3+1)-1=3n*4-1
Để a chia hết cho 7 thì aEB(7)={1;7;14;28;35;...}
=>{3n*4}E{2;8;15;29;36;...}
=>3nE{9;...} => nE{3;...}
b=2*3n+1-3n+1=3n*(6-1)+1=3n*5+1
Để b chia hết cho 7 thì bEB(7)={1;7;14;28;35;...}
=>{3N*5}E{0;6;13;27;34;...}
=>3NE{0;...}
=>NE{0;...}
=>đpcm(cj ko chắc cách cm này)
a) \(3^{n+2}-2^{n+2}+3^n-2^n=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)=\left(3^n.3^2+3^n\right)-\left(2^n.2^2+2^n\right)\)
\(=\left[3^n.\left(3^2+1\right)\right]-\left[2^n.\left(2^2+1\right)\right]=\left(3^n.10\right)-\left(2^{n-1}.2.5\right)=\left(3^n.10\right)-\left(2^{n-1}.10\right)\)
Do: 3n . 10 chia hết cho 10 và 2n - 1 . 10 chia hết cho 10
=> ( 3n . 10 ) - ( 2n - 1 . 10 ) chia hết cho 10 => 3n + 2 - 2n + 2 + 3n - 2n chia hết cho 10