BÀI 1

...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2021

a) mấy bạn dưới kia làm rồi mình không làm lại

b) Để (d) // (d1) thì \(\hept{\begin{cases}m-2=-2\\2\ne5\left(dung\right)\end{cases}}\Leftrightarrow m=0\)

12 tháng 5 2020

Ta có : \(\Delta=\left(-5\right)^2-4.4m=25-16m\)

Để pt có 2 nghiệm phân biệt \(< =>25-16m>0\)

\(< =>m< \frac{25}{16}\)

Theo hệ thức vi ét ta có : \(\hept{x_1+x_2=5}\)

Thay vào pt ta có : 

\(\sqrt{\left(4x_1+4x_2\right)+7x_1}+\sqrt{\left(4x_1+4x_2\right)+7x_2}=9\sqrt{3}\)

Binh phương 2 vế ta được 

\(5.4+7x_1+7x_2+5.4=243\)

\(< =>7.5+40=243< =>75=243\)

<=> sai đề :)) hoặc giải ngu xD

19 tháng 3 2017

m=-5/4 đó bạn

19 tháng 3 2017

bạn giải như thế nào vậy

20 tháng 7 2015

\(A=\frac{3x^2-x+1}{3x+2}=\frac{x\left(3x+2\right)-\left(3x+2\right)+3}{3x+2}=x-1+\frac{3}{3x+2}\)

A nguyên khi \(\frac{3}{3x+2}\)nguyên <=> \(3x+2\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)

\(\Leftrightarrow x\in\left\{-\frac{5}{3};-1;-\frac{1}{3};\frac{1}{3}\right\}\)

x nguyên nên \(x=-1\)

Kết luận: x = -1.

27 tháng 7 2021

\(T=x^4+y^4+z^4\)

áp dụng bđt bunhia cốp -xki với bộ số \(\left(x^2,y^2,z^2\right);\left(1,1,1\right)\)

\(\left(\left[x^2\right]^2+\left[y^2\right]^2+\left[z^2\right]^2\right)\left(1^2+1^2+1^2\right)\ge\left(x^2+y^2+z^2\right)^2\)

\(\left(x^4+y^4+z^4\right)\ge\frac{\left(x^2+y^2+z^2\right)^2}{3}\)

\(\left(x^4+y^4+z^4\right)\ge\frac{\left(2xy+2yz+2xz\right)^2}{3}\)(bđt tương đương)

\(\left(x^4+y^4+z^4\right)\ge\frac{4}{3}\)

dấu "=" xảy rakhi và chỉ khi

\(\hept{\begin{cases}\frac{x^2}{1}=\frac{y^2}{1}=\frac{z^2}{1}\\x=y=z=1\end{cases}< =>\frac{1^2}{1}=\frac{1^2}{1}=\frac{1^2}{1}}\)(luôn đúng)

vậy dấu "=" có xảy ra

\(< =>MIN:T=\frac{4}{3}\)

27 tháng 7 2021

sửa dòng 3 dưới lên 

\(T\ge\frac{\left(xy+yz+xz\right)^2}{3}=\frac{1}{3}\)

Dấu ''='' xảy ra khi \(x=y=z=\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3}\)

Vậy GTNN T là 1/3 khi \(x=y=z=\frac{\sqrt{3}}{3}\)

20 tháng 3 2017

để thiếu số 2 trước \(\sqrt{2x^2...}\)

5 tháng 4 2017

Đề bài sai ,đề bài đúng :

\(\sqrt{2x+3}\)+\(\sqrt{x+1}\)=3x+\(2\sqrt{2x^2+5x+3}\)-16