Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với mọi x ta có:
|x - 2001| = |2001 - x|
=> A = |x - 2002| + |2001 - x|
Với mọi x ta cũng có:
|x - 2002| + | 2001 - x| \(\ge\)|(x - 2002) + (2001 - x)|
A \(\ge\) |1|
A \(\ge\) 1
Dấu bằng xảy ra <=> (x - 2002).(2001 - x) \(\ge\) 0
=> x - 2002 \(\ge\) 0; 2001 - x \(\ge\) 0 (1)
hoặc x - 2002 \(\le\) 0; 2001 - x \(\le\) 0 (2)
Từ (1) => x > hoặc = 2002; x < hoặc = 2001 => x không có giá trị thoả mãn
Từ (2) => x < hoặc = 2002 ; x > hoặc = 2001 => 2001 \(\le\) x \(\le\) 2002
Vậy 2001 \(\le\) x \(\le\) 2002 thì A có giá trị nhỏ nhất = 1
mình ra từ hồi chiều nhưng bây giờ mới rảnh để chỉ cho bạn, xin lỗi nhé
x - y = 2
<=> y = x - 2
\(A=xy+4\\ =x\left(x-2\right)+4\\ =x^2-2x+4\\ =\left(x-1\right)^2+3\)
có \(\left(x-1\right)^2\ge0\forall\)
=> (x-1)2 + 3 \(\ge3\)
=> (x-1)2 + 3 min = 3
=> A min = 3 (??, mình làm min đựoc thôi, còn max thì chịu)
bài kia cũng thế, thay y = x-2 vào rồi tính ra ???
Bn "Lưu Hiền" có thể nói cho mình biết tại sao lại :
x\(^2\)- 2x+4
=> ( x - 1)\(^2\)+3
Mình ko hiểu lắm.
\(H=-\left|x\right|+7\)
Vì \(-\left|x\right|\le0\Rightarrow-\left|x\right|+7\le7\)
Dấu "=" xảy ra khi \(\left|x\right|=0\)
\(\Rightarrow x=0\)
Vậy \(Max_H=7\) khi \(x=0.\)
\(K=-\left|x-5\right|-2\)
\(-\left|x-5\right|\le0\Rightarrow-\left|x-5\right|-2\le-2\)
Dấu "=" xảy ra khi \(\left|x-5\right|=0\)
\(\Rightarrow x-5=0\)
\(\Rightarrow x=5\)
Vậy \(Max_K=-2\) khi \(x=5.\)
\(E=7-\left|x+4\right|\)
\(-\left|x+4\right|\le0\Rightarrow7-\left|x+4\right|\le7\)
Dấu "=" xảy ra khi \(\left|x+4\right|=0\)
\(\Rightarrow x=-4\)
Vậy \(Max_E=7\) khi \(x=-4.\)
\(M=\left|x\right|+5\)
Vì \(\left|x\right|\ge0\Rightarrow\left|x\right|+5\ge5\)
Dấu "=" xảy ra khi \(\left|x\right|=0\)
\(\Rightarrow x=0\)
Vậy \(Min_M=5\) khi \(x=0.\)
2 câu kia tương tự.
H = -|x| + 7
Có : \(-\left|x\right|\le0\)
<=> \(-\left|x\right|+7\le7\)
=> MaxH = 7
<=> -|x| = 0
<=> x = 0
K = -|x - 5| - 2
Có : \(-\left|x-5\right|\le0\)
<=> \(-\left|x-5\right|-2\le-2\)
=> MaxK = -2
<=> -|x - 5| = 0
<=> x = 5
E = 7 - |x + 4|
Có : \(\left|x+4\right|\ge0\)
<=> \(7-\left|x+4\right|\le7\)
=> MaxE = 7
<=> |x + 4| = 0
<=> x = -4
Ta có: \(\left|x-1\right|+\left|x-5\right|=\left|x-1\right|+\left|5-x\right|\)
Nhận thấy: \(\left[{}\begin{matrix}\left|x-1\right|\ge x-1\\\left|5-x\right|\ge5-x\end{matrix}\right.\)
\(\Rightarrow\left|x-1\right|+\left|5-x\right|\ge x-1+5-x\)
\(\Rightarrow\left|x-1\right|+\left|5-x\right|\ge4\)
Dấu \("="\) xảy ra khi:
\(\left[{}\begin{matrix}x-1\ge0\\5-x\ge0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x\ge1\\x\le5\end{matrix}\right.\) \(\Rightarrow1\le x\le5\)
Vậy \(1\le x\le5.\)
Cho mk thêm cái ạ:
\(x\in\left\{1;2;3;4;5\right\}\)
Vậy \(x\in\left\{1;2;3;4;5\right\}\)
Vì \(f\left(x_1.x_2\right)=f\left(x_1\right).f\left(x_2\right)\) nên:
\(f\left(4\right)=f\left(2.2\right)=f\left(2\right).f\left(2\right)=10.10=100\)
\(f\left(16\right)=f\left(4.4\right)=f\left(4\right).f\left(4\right)=100.100=10000\)
\(f\left(32\right)=f\left(16.2\right)=f\left(16\right).f\left(2\right)=10000.10=100000\)
Vậy \(f\left(32\right)=100000\)
a) Dễ thấy |x-5| = |5-x|
Áp dụng BĐT: |a| + |b| \(\ge\) |a+b| ta có
|x+3| + |5-x| \(\ge\) |x+3+5-x| = 8
=> |x+3| + |5-x| \(\ge\) 8
Dấu "=" xảy ra khi -3 < x < 5
b) Dễ thấy |x-8| = |8-x|; |x-7| = |7-x|
Áp dụng BĐT: |a| + |b| \(\ge\) |a+b| ta có
|x+2| + |8-x| \(\ge\) |x+2+8-x| = 10
=> |x+2| + |8-x| \(\ge\) 10
Dấu "=" xảy ra khi 2 < x < 8
|x+5| + |7-x| \(\ge\) |x+5+7-x| = 12
=> |x+5| + |7-x| \(\ge\) 12
Dấu "=" xảy ra khi -5 < x < 7
Tìm được x trong khoảng 2 < x < 6 và MinB = 12
c) Dễ thấy |x-5| = |5-x|;
Áp dụng BĐT...
ta có : \(\left\{{}\begin{matrix}\left|x+3\right|\ge0\\\left|x-2\right|+\left|5-x\right|\ge3\end{matrix}\right.\)
=> C \(\ge\)3
Dấu "=" xảy ra khi x = 3
Lâu rồi mới gặp :))