Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) \(0,5-\frac{5}{41}+\frac{1}{2}-\frac{36}{41}\)
\(=\frac{1}{2}-\frac{5}{41}+\frac{1}{2}-\frac{36}{41}\)
\(=\left(\frac{1}{2}+\frac{1}{2}\right)-\left(\frac{5}{41}+\frac{36}{41}\right)\)
\(=1-1\)
\(=0.\)
b) \(\left(-\frac{2}{3}+\frac{3}{7}\right):\frac{4}{5}+\left(-\frac{1}{3}+\frac{4}{7}\right):\frac{4}{5}\)
\(=-\frac{2}{3}+\frac{3}{7}:\frac{4}{5}-\frac{1}{3}+\frac{4}{7}:\frac{4}{5}\)
\(=\left[\left(-\frac{2}{3}\right)-\frac{1}{3}\right]+\left(\frac{3}{7}+\frac{4}{7}\right):\frac{4}{5}\)
\(=\left(-1\right)+1:\frac{4}{5}\)
\(=\left(-1\right)+\frac{5}{4}\)
\(=\frac{1}{4}.\)
c) \(\left(-\frac{3}{4}\right).\sqrt{\frac{16}{9}+3.\sqrt{49}}\)
\(=\left(-\frac{3}{4}\right).\sqrt{\frac{16}{9}+3.7}\)
\(=\left(-\frac{3}{4}\right).\sqrt{\frac{16}{9}+21}\)
\(=\left(-\frac{3}{4}\right).\sqrt{\frac{205}{9}}\)
\(=\left(-\frac{3}{4}\right).\frac{\sqrt{205}}{3}\)
\(=-\frac{\sqrt{205}}{4}.\)
d) \(\left(-\frac{1}{3}\right)^2.\frac{4}{11}+1\frac{5}{11}.\left(\frac{1}{3}\right)^2\)
\(=\frac{1}{9}.\frac{4}{11}+\frac{16}{11}.\frac{1}{9}\)
\(=\frac{1}{9}.\left(\frac{4}{11}+\frac{16}{11}\right)\)
\(=\frac{1}{9}.\frac{20}{11}\)
\(=\frac{20}{99}.\)
Chúc bạn học tốt!
BÀi 2:
Cả 4 câu áp dụng tính chất này: \(\sqrt{a^2}=a\)
a)\(\sqrt{\frac{3^2}{7^2}}=\frac{3}{7}\)
b)\(\frac{\sqrt{3^2}+\sqrt{39^2}}{\sqrt{7^2}+\sqrt{92^2}}=\frac{3+39}{7+92}=\frac{42}{99}=\frac{14}{33}\)
c)\(\frac{\sqrt{3^2}-\sqrt{39^2}}{\sqrt{7^2}-\sqrt{91^2}}=\frac{3-39}{7-91}=\frac{-36}{-84}=\frac{3}{7}\)
d)\(\sqrt{\frac{39^2}{91^2}}=\frac{39}{91}=\frac{3}{7}\)
b)Vì BCNN(3;5) = 15
\(\Rightarrow\frac{x}{2}=\frac{y}{3}\Leftrightarrow\frac{x}{2.5}=\frac{y}{3.5}=\frac{x}{10}=\frac{y}{15};\frac{y}{5}=\frac{z}{7}\Leftrightarrow\frac{y}{5.3}=\frac{z}{7.3}=\frac{y}{15}=\frac{z}{21}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x+y+z}{10+15+21}=\frac{92}{46}=2\)
\(\Rightarrow\left\{{}\begin{matrix}x=2.10=20\\y=2.15=30\\z=2.21=42\end{matrix}\right.\)
Vậy...
c)Vì BCNN(2;3;5) = 30
\(\Rightarrow2x=3y=5z\Leftrightarrow\frac{2x}{30}=\frac{3y}{30}=\frac{5z}{30}=\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
WTFFFFFF>>>
d)dễ... áp dụng tính chất DTBN là ra 1/2 rồi tính
e)Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(x=\frac{y}{2}=\frac{z}{4}=\frac{4x}{4}=\frac{3y}{6}=\frac{2x}{8}=\frac{4x-3y+2x}{4-6+8}=\frac{36}{6}=6\)
\(\Rightarrow\left\{{}\begin{matrix}x=6.1=6\\y=6.2=12\\z=6.4=24\end{matrix}\right.\)
Vậy...
a/ \(\frac{15}{34}+\frac{7}{21}+\frac{19}{34}-\frac{32}{17}+\frac{14}{21}=\left(\frac{15}{34}+\frac{19}{34}\right)+\left(\frac{7}{21}+\frac{14}{21}\right)-\frac{32}{17}=1+1-\frac{32}{17}=\frac{2}{17}\)
a) \(\frac{21}{47}+\frac{9}{45}+\frac{26}{47}+\frac{4}{5}\)
\(=\left(\frac{21}{47}+\frac{26}{47}\right)+\left(\frac{9}{45}+\frac{4}{5}\right)\)
\(=\frac{47}{47}+\left(\frac{1}{5}+\frac{4}{5}\right)\)
\(=1+1=2\)
b) \(12.\left(-\frac{2}{3}\right)^2+\frac{4}{3}\)
\(=12.\frac{4}{9}+\frac{4}{3}\)
\(=\frac{16}{3}+\frac{4}{3}\)
\(=\frac{20}{3}\)
c) \(12,5.\left(-\frac{5}{7}\right)+15.\left(-\frac{5}{7}\right)\)
\(=\left(-\frac{5}{7}\right).\left(12,5+15\right)\)
\(=\left(-\frac{5}{7}\right).27,5\)
\(=\left(-\frac{5}{7}\right).\frac{55}{2}\)
\(=-\frac{275}{14}\)
d) \(\frac{4}{5}.\left(\frac{7}{2}+\frac{1}{4}\right)^2\)
\(=\frac{4}{5}.\left(\frac{14}{4}+\frac{1}{4}\right)^2\)
\(=\frac{4}{5}.\left(\frac{15}{4}\right)^2\)
\(=\frac{4}{5}.\frac{225}{16}\)
\(=\frac{45}{4}\)
a)\(\frac{21}{47}+\frac{9}{45}+\frac{26}{47}+\frac{4}{5}\)
=\(\frac{21}{47}+\frac{1}{5}+\frac{26}{47}+\frac{4}{5}\)
=\(\left(\frac{21}{47}+\frac{26}{47}\right)+\left(\frac{1}{5}+\frac{4}{5}\right)\)
=\(\frac{47}{47}+\frac{5}{5}=1+1=2\)
b)\(12.\left(-\frac{2}{3}\right)^2+\frac{4}{3}\)
=\(12.\frac{4}{9}+\frac{4}{3}\)
=\(\frac{12}{1}.\frac{4}{9}+\frac{4}{3}=\frac{48}{9}+\frac{4}{3}\)
=\(\frac{16}{3}+\frac{4}{3}=\frac{20}{3}\)
c)\(12,5.\left(-\frac{5}{7}\right)+1,5.\left(-\frac{5}{7}\right)\)
=\(\left(-\frac{5}{7}\right).\left(12,5+1,5\right)\)
=\(\left(-\frac{5}{7}\right).14=\left(-\frac{5}{7}\right).\frac{14}{1}=-10\)
d)\(\frac{4}{5}.\left(\frac{7}{2}+\frac{1}{4}\right)^2\)
=\(\frac{4}{5}.\left(\frac{14}{4}+\frac{1}{4}\right)^2\)
=\(\frac{4}{5}.\left(\frac{15}{4}\right)^2\)
=\(\frac{4}{5}.\frac{225}{16}\)
=\(\frac{900}{80}=\frac{45}{4}\)
Nhớ tick cho mình nha!
A) \(A=\left(-\frac{3}{4}+\frac{2}{3}\right):\frac{5}{11}+\left(-\frac{1}{4}+\frac{1}{3}\right):\frac{5}{11}\)
\(A=-11.\frac{1}{12}:5+\frac{1}{3}-\frac{1}{4}:\frac{5}{11}\)
\(A=-\frac{11.\frac{1}{12}}{5}+\frac{11.\frac{1}{12}}{5}\)
\(\Rightarrow A=0\)
b) \(B=\left(-3\right)^2.\left(\frac{3}{4}-0,25\right)-\left(3\frac{1}{2}-1\frac{1}{2}\right)\)
\(B=\left(-3\right)^2.\left(\frac{3}{4}-0,25\right)-\left(\frac{7}{2}-\frac{4}{2}\right)\)
\(B=\left(-3\right)^2.\left(\frac{3}{4}-0,25\right)-2\)
\(B=3^2.\left(\frac{3}{4}-0,25\right)-2\)
\(B=4,5-2\)
\(\Rightarrow B=2\)
Lộn nha :v ở phần b) ấy, bạn sửa 4,5 - 2 = 2 thành 4,5 - 2 = 2,5 hộ mình nha
Bài 11: Cho tam giác ABC có AB=AC. Gọi M là trung điểm của BC. Chứng minh rằng:
a. AMB = AMC
b. AM là tia phân giác của góc
c. AM ⊥ BC
d. Vẽ At là tia phân giác của góc ngoài ở đỉnh A của Chứng minh:At//BC
Bài 12: Cho tam giác ABC, = 900. Trên BC lấy E sao cho BE = BA. Tia phân giác của góc B cắt AC ở D.
a. Chứng minh Δ ABD = Δ EBD
b. Tính số đo
c. Chứng minh BD ⊥ AE
Bài 13: Cho tam giác ABC, D là trung điểm của AB, E là trung điểm của AC. Vẽ F sao cho E là trung điểm của DF. Chứng minh:
a. ADE = CFE
b. DB = CF
c. AB // CF
d. DE // BC
Bài 14: Cho tam giác ABC có BA<BC. Trên tia BA lấy điểm D sao cho BD = BC.Tia phân giác của góc B cắt AC và DC lần lượt tại E và I.
a. Chứng minh rằng: ΔBEC =Δ BED
b. Chứng minh ID = IC
c. Từ A kẻ AH DC, H. Chứng minh: AH // BI
Bài 15: Cho tam giác ABC. Trên tia đối AB lấy D sao cho AD = AB, trên tia đối AC lấy điểm E sao cho AE = AC.
a. Chứng minh rằng: BE = CD
b. Chứng minh: BE//CD
c. Gọi M là trung điểm của BE và N là trung điểm của CD. Chứng minh:AM = AN
Hình học nha:)