Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn nên gõ đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề và hỗ trợ bạn tốt hơn nhé.
a: Ta có: \(P=\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{3}{\sqrt{x}+1}-\dfrac{6\sqrt{x}-4}{x-1}\)
\(=\dfrac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)
b: Thay \(x=\dfrac{1}{4}\) vào P, ta được:
\(P=\left(\dfrac{1}{2}-1\right):\left(\dfrac{1}{2}+1\right)=\dfrac{-1}{2}:\dfrac{3}{2}=-\dfrac{1}{3}\)
c: Ta có: \(P< \dfrac{1}{2}\)
\(\Leftrightarrow P-\dfrac{1}{2}< 0\)
\(\Leftrightarrow\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{1}{2}< 0\)
\(\Leftrightarrow\dfrac{2\sqrt{x}-2-\sqrt{x}-1}{2\left(\sqrt{x}+1\right)}< 0\)
\(\Leftrightarrow\sqrt{x}< 3\)
hay x<9
Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}0\le x< 9\\x\ne1\end{matrix}\right.\)
Bài 1 :
+) ĐKXĐ : \(\hept{\begin{cases}x\ge0\\x\ne9\end{cases}}\)
a) Ta có :
\(x=4-2\sqrt{3}\)
\(\Leftrightarrow x=3-2\sqrt{3}+1\)
\(\Leftrightarrow x=\left(\sqrt{3}-1\right)^2\)( Thỏa mãn ĐKXĐ )
Vậy tại \(x=\left(\sqrt{3}-1\right)^2\)thì giá trị của biểu thức A là :
\(A=\frac{\sqrt{\left(\sqrt{3}-1\right)^2}+1}{\sqrt{\left(\sqrt{3}-1\right)^2}-3}=\frac{\sqrt{3}-1+1}{\sqrt{3}-1-3}=\frac{\sqrt{3}}{\sqrt{3}-4}=\frac{-\sqrt{3}\left(\sqrt{3}+4\right)}{7}\)
b)
\(B=\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}\)
\(B=\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-3x-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(B=\frac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(B=\frac{-3-3\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\frac{-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
Ta có :
\(P=A:B\)
\(\Leftrightarrow P=\frac{\sqrt{x}+1}{\sqrt{x}-3}:\frac{-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(\Leftrightarrow P=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{-3\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}\)
\(\Leftrightarrow P=\frac{-\sqrt{x}-3}{3}\)
c) \(P=\frac{-\sqrt{x}-3}{3}\ge0\)
Dấu bằng xảy ra
\(\Leftrightarrow-\sqrt{x}-3=0\)
\(\Leftrightarrow\sqrt{x}=-3\)( vô lí )
Vậy không tìm được giá trị nào của x để P đạt GTNN
- a.\(A=\sqrt{6+4\sqrt{2}}+\sqrt{6-4\sqrt{2}}\)
\(\sqrt{2}A=\sqrt{12+8\sqrt{2}}+\sqrt{12-8\sqrt{2}}\)
\(=\sqrt{\left(2\sqrt{2}+2\right)^2}+\sqrt{\left(2\sqrt{2}-2\right)^2}\)
\(=2\sqrt{2}+2+2\sqrt{2}-2=4\sqrt{2}\)
\(A=\frac{4\sqrt{2}}{\sqrt{2}}=4\)
Bài 1:
a) \(\sqrt{6+4\sqrt{2}+\sqrt{6+4\sqrt{2}}}\)
\(=\sqrt{\left(2+\sqrt{2}\right)^2}+\sqrt{\left(2-\sqrt{2}\right)^2}\)
\(=2+\sqrt{2}+\left|2-\sqrt{2}\right|\)
\(=2+\sqrt{2}+2-\sqrt{2}\)( Vì \(2>\sqrt{2}\))
\(=4\)
b) Hình như sai đầu bài
Bài 2
Ta có \(VP=\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}\)
\(=\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{3}-1\right)^2}\)
\(=\sqrt{3}+1-\left|\sqrt{3}-1\right|\)
\(=\sqrt{3}+1-\sqrt{3}+1\)
\(=2=VT\)
bn ơi,giúp mk nốt ik
Bài 1:
Ta có: \(A=\left(\frac{2\sqrt{x}}{\sqrt{x}-3}+\frac{x}{3\sqrt{x}-x}\right):\frac{\sqrt{x}+3}{x-9}\)
\(=\left(\frac{2x}{\sqrt{x}\left(\sqrt{x}-3\right)}-\frac{x}{\sqrt{x}\left(\sqrt{x}-3\right)}\right):\frac{\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{x}{\sqrt{x}\left(\sqrt{x}-3\right)}:\frac{1}{\sqrt{x}-3}\)
\(=\frac{x\cdot\left(\sqrt{x}-3\right)}{\sqrt{x}\cdot\left(\sqrt{x}-3\right)}\)
\(=\sqrt{x}\)