Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ta có:
\(\frac{n+1}{2n+3}\)là phân số tối giản thì:
\(\left(n+1;2n+3\right)=d\)
Điều Kiện;d thuộc N, d>0
=>\(\hept{\begin{cases}2n+3:d\\n+1:d\end{cases}}=>\hept{\begin{cases}2n+3:d\\2n+2:d\end{cases}}\)
=>2n+3-(2n+2):d
2n+3-2n-2:d
hay 1:d
=>d=1
Vỵ d=1 thì.....
Bài 2 :
Để A = (n+2) : (n-5) là số nguyên thì n+2 phải chia hết cho n-5
Mà n-5 chia hết cho n-5
=> (n+2) - (n-5) chia hết cho n-5
=> (n-n) + (2+5) chia hết cho n-5
=> 7 chia hết cho n-5
=> n-5 thuộc Ư(5) = { 1 : -1 ; 7 ; -7 }
Ta có bảng giá trị
n-5 | 1 | -1 | 7 | -7 |
n | 6 | 4 | 12 | -2 |
A | 8 | -6 | 2 | 0 |
KL | TMĐK | TMĐK | TMĐK | TMĐK |
Vậy với n thuộc { -2 ; 4 ; 6 ; 12 } thì A là số nguyên
a.Vì \(\frac{17}{19}< 1\) và \(\frac{19}{17}>1\)
nên \(\frac{17}{19}< 1< \frac{19}{17}\)
hay \(\frac{17}{19}< \frac{19}{17}\)
b) \(\frac{15}{7}=2\frac{1}{7}\) và \(\frac{25}{12}=2\frac{1}{12}\)
Vì \(2\frac{1}{7}>2\frac{1}{12}\) nên \(\frac{15}{7}>\frac{25}{12}\)
\(A=\frac{54.107-53}{53.107+54}\)
\(\Leftrightarrow A=\frac{53.107+107-53}{53.107+54}\)
\(\Leftrightarrow A=\frac{53.107+54}{53.107+54}\)
\(\Leftrightarrow A=1\)
\(B=\frac{135.269-133}{134.269+135}\)
\(\Leftrightarrow B=\frac{134.269+269-133}{134.269+135}\)
\(\Leftrightarrow B=\frac{134.269+135}{134.269+135}\)
\(\Leftrightarrow B=1\)
Vì 1 = 1 nên A =B
\(\frac{n+1}{2n+3}\)
Gọi ƯCLN(n + 1, 2n + 3) là a
Ta có:
n + 1\(⋮\)a
\(\Rightarrow\)2(n + 1)\(⋮\)a
\(\Leftrightarrow\)2n + 2\(⋮\)a
2n + 3\(⋮\)a
\(\Rightarrow\)(2n + 3) - (2n + 2)\(⋮\)a
\(\Rightarrow\)1\(⋮\)a
\(\Rightarrow\)a = 1
\(\frac{2n+1}{3n+2}\)
Gọi ƯCLN(2n + 1, 3n + 2) là b
Ta có:
2n + 1\(⋮\)b
\(\Rightarrow\)3.(2n + 1)\(⋮\)b
\(\Leftrightarrow\)6n + 3\(⋮\)b (1)
3n + 2\(⋮\)b
\(\Rightarrow\)2.(3n + 2)\(⋮\)b
\(\Leftrightarrow\)6n + 4\(⋮\)b (2)
Từ (1), (2) ta có:
(6n + 4) - (6n + 3)\(⋮\)b
\(\Leftrightarrow\)1\(⋮\)b
\(\Rightarrow\)b = 1
Vậy ƯCLN(2n + 1, 3n + 2) là 1
\(\Rightarrow\)Phân số tối giản
a, \(\frac{n+2}{n+3}\)
Gọi \(d=ƯCLN\left(n+2,n+3\right)\)
\(\Rightarrow\hept{\begin{cases}n+2⋮d\\n+3⋮d\end{cases}}\)
\(\Rightarrow\left(n+3\right)-\left(n+2\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
Vậy phân số \(\frac{n+2}{n+3}\)là p/số tối giản
b, \(\frac{n+1}{2n+3}\)
Gọi \(d=ƯCLN\left(n+1,2n+3\right)\)
\(\Rightarrow\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2\left(n+1\right)⋮d\\2n+3⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}}\)
\(\Rightarrow\left(2n+3\right)-\left(2n+2\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
Vậy...
Chứng tỏ rằng các phân sô sau tối giản với mọi phân số:
\(A,\frac{n+1}{2n+3}\)\(B,\frac{2n+3}{4n+8}\)
a) Vì phân số n+1/2n+3 tối giản với mọi phân số nên ƯCLN(n+1; 2n+3) =1. Gọi ƯCLN(n+1; 2n+3) = d
=> n+1 \(⋮\)d
2n+3 \(⋮\)d
=> 2(n+1) \(⋮\)d
2n+ 3 \(⋮\)d
=> 2n+2 \(⋮\)d
2n+3 \(⋮\)d
=> 2n+3 - 2n -2 \(⋮\)d
=> 1 \(⋮\)d
=> d =1
Vì d= 1 nên phân số n+1/2n+3 là phân số tối giản
Phần b cũng thế nha
Gọi ƯCLN(n + 1 ; 2n + 3) = d
=> \(\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(n+1\right)⋮d\\2n+3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}}\Rightarrow\left(2n+3\right)-\left(2n+2\right)⋮d}\)
=> \(1⋮d\Rightarrow d=1\)
=> n + 1 ; 2n + 3 là 2 số nguyên tố cùng nhau
=> \(\frac{n+1}{2n+3}\) là phân số tối giản
b Gọi ƯCLN(2n + 3 ; 4n + 8) = d
=> \(\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(2n+3\right)⋮d\\4n+8⋮d\end{cases}\Rightarrow}\hept{\begin{cases}4n+6⋮d\\4n+8⋮d\end{cases}}\Rightarrow\left(4n+8\right)-\left(4n+6\right)⋮d}\)
=> \(2⋮d\Rightarrow d\inƯ\left(2\right)\Rightarrow d\in\left\{1;2\right\}\)
Vì \(2n+3\)là số lẻ với mọi n nguyên
=> 2n + 3 không chia hết cho 2
=> \(d\ne2\)=> d = 1
Khi d = 1 , 2n + 3 ; 4n + 8 là 2 số nguyên tố cùng nhau
=> B là phân số tối giản
\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)A=54-53/53+54=1/107=2/214
B=135-133/134+135=2/169
tự so sánh tiếp
\(M=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{99^2}\)
\(\Rightarrow M< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}\)
\(\Rightarrow M< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}\)
\(\Rightarrow M< 1-\frac{1}{99}< 1\)
Dễ thấy M > 0 nên 0 < M < 1
Vậy M không là số tự nhiên.
\(S=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\)
\(\Rightarrow S>\frac{1}{100}+\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\) (50 số hạng \(\frac{1}{100}\))
\(\Rightarrow S>\frac{1}{100}.50=\frac{1}{2}\)
Vậy \(S>\frac{1}{2}\left(đpcm\right)\)
bài 2
a, TS= 54 . 107 -53=(53+1) .107-53=53.107+107-53=53.107+ 54
<=>
\(\frac{TS}{MS}\)=\(\frac{54.107+54}{54.107+54}\)=1
Bài 1 :
\(a)\) Gọi \(ƯCLN\left(n+1;2n+3\right)=d\)
\(\Rightarrow\)\(\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(n+1\right)⋮d\\2n+3⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}}}\)
\(\Rightarrow\)\(\left(2n+2\right)-\left(2n+3\right)⋮d\)
\(\Rightarrow\)\(2n+2-2n-3⋮d\)
\(\Rightarrow\)\(\left(-1\right)⋮d\)
\(\Rightarrow\)\(d\inƯ\left(-1\right)\)
Mà \(Ư\left(-1\right)=\left\{1;-1\right\}\)
\(\Rightarrow\)\(d\in\left\{1;-1\right\}\)
Do đó :
\(ƯCLN\left(n+1;2n+3\right)=\left\{1;-1\right\}\)
Vậy \(\frac{n+1}{2n+3}\) là phân số tối giản với mọi n
Chúc bạn học tốt ~