Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Xét mẫu thức:
$2xy^2+2yz^2+2zx^2+3xyz=(xy^2+yz^2+zx^2)+(xy^2+xyz)+(yz^2+xyz)+(xz^2+xyz)$
$=xy^2+yz^2+zx^2+xy(y+z)+yz(z+x)+xz(x+y)$
$=xy^2+yz^2+zx^2-(x^2y+y^2z+z^2x)$
$=(x-y)(y-z)(z-x)$
$\Rightarrow (2xy^2+2yz^2+2zx^2)^2=(x-y)^2(y-z)^2(z-x)^2$
Xét tử thức:
$(xy+2z^2)(yz+2x^2)(xz+2y^2)$
$=[xy+z^2-z(x+y)][yz+x^2-x(z+y)][xz+y^2-y(x+z)]$
$=(z-x)(z-y)(x-y)(x-z)(y-x)(y-z)=-(x-y)^2(y-z)^2(z-x)^2$
Do đó: $A=-1$
Bài 1 :
\(6xy\cdot\sqrt{\frac{9x^2}{16y^2}}=6xy\cdot\frac{3x}{4y}=\frac{18x^2y}{4y}=\frac{9}{2}x^2\)
\(\sqrt{\frac{4+20a+25a^2}{b^4}}=\sqrt{\frac{\left(2+5a\right)^2}{\left(b^2\right)^2}}=\frac{2+5a}{b^2}\)
\(\left(m-n\right).\sqrt{\frac{m-n}{\left(m-n\right)^2}}=\sqrt{\left(m-n\right)^2}\cdot\sqrt{\frac{1}{m-n}}=\sqrt{\frac{\left(m-n\right)^2}{m-n}}=\sqrt{m-n}\)
Bài 2 :
1. \(\left(2\sqrt{3}-\sqrt{12}\right):5\sqrt{3}=\left(2\sqrt{3}-2\sqrt{3}\right):5\sqrt{3}=0:5\sqrt{3}=0\)
2. \(\sqrt{\frac{317^2-302^2}{1013^2-1012^2}}=\frac{\sqrt{\left(317+302\right)\left(317-302\right)}}{\sqrt{\left(1013+1012\right)\left(1013-1012\right)}}=\frac{\sqrt{619}\cdot\sqrt{15}}{\sqrt{2025}}=\sqrt{\frac{619}{135}}\)(check lại)
3. \(\sqrt{27\left(1-\sqrt{3}\right)^2}:3\sqrt{75}\)
\(=\sqrt{27}\left(1-\sqrt{3}\right):15\sqrt{3}\)
\(=3\sqrt{3}\left(1-\sqrt{3}\right):15\sqrt{3}\)
\(=\frac{1-\sqrt{3}}{5}\)
4.\(\left(5\sqrt{\frac{1}{5}}+\frac{1}{2}\sqrt{20}-\frac{5}{4}\sqrt{\frac{4}{5}}+\sqrt{5}\right):2\sqrt{5}\)
\(=\left(\frac{5}{\sqrt{5}}+\frac{\sqrt{20}}{2}-\frac{\frac{5}{4}\cdot2}{\sqrt{5}}+\sqrt{5}\right):2\sqrt{5}\)
\(=\left(\sqrt{5}+\frac{2\sqrt{5}}{2}-\frac{\frac{5}{2}}{\sqrt{5}}+\sqrt{5}\right):2\sqrt{5}\)
\(=\left(\sqrt{5}+\sqrt{5}+\frac{\sqrt{5}}{2}+\sqrt{5}\right):2\sqrt{5}\)
\(=\frac{7}{2}\sqrt{5}:2\sqrt{5}\)
\(=\frac{7}{4}\)
a)\(ĐKXĐ:\hept{\begin{cases}x>3\\x\le-1\end{cases}}\)
TH1: \(x-3>0\)
\(\left(x-3\right)\left(x+1\right)+4.\frac{x-3}{\sqrt{x-3}}\sqrt{x+1}=-3\)
\(\left(x-3\right)\left(x+1\right)+4\sqrt{\left(x-3\right)\left(x+1\right)}+3=0\)
Đặt \(t=\sqrt{\left(x-3\right)\left(x+1\right)}\left(t\ge0\right)\)
Phương trình trở thành:
\(t^2+4t+3=0\Leftrightarrow\orbr{\begin{cases}t=-1\\t=-3\end{cases}}\)(ktm)=> Vô Nghiệm
TH2: \(x-3< 0\)
\(\left(x-3\right)\left(x+1\right)-4.\frac{3-x}{\sqrt{3-x}}\sqrt{-x-1}=-3\)
\(\Leftrightarrow\left(x-3\right)\left(x+1\right)-4\sqrt{\left(x-3\right)\left(x+1\right)}+3=0\)
Tự làm tiếp nhé
b)Nhân chéo chuyển vế rút gọn ta được:
\(x^3-2x^2+3x-2=0\)
\(\Leftrightarrow x\left(x^2-2x+1\right)+2\left(x-1\right)=0\)
\(\Leftrightarrow x\left(x-1\right)^2+2\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2-x+2\right)=0\)
\(\Rightarrow x=1\)
Em nghĩ nếu làm như Lê Hồ Trọng Tín thì dấu "=" không xảy ra -> sai nên em xin chia sẻ cách làm của mình.Mong được mọi người góp ý.
Theo BĐT AM-GM
\(\sqrt{2019x\left(y+2\right)}=\sqrt{673}.\sqrt{3.x\left(y+2\right)}\)
\(\le\frac{\sqrt{673}}{2}\left[3+x\left(y+2\right)\right]=\frac{\sqrt{673}}{2}\left(3+xy+2x\right)\)
Tương tự với hai BĐT còn lại và cộng theo vế ta được:
\(M\le\frac{\sqrt{673}}{2}\left[9+\left(xy+yz+zx\right)+2\left(x+y+z\right)\right]\)
\(\le\frac{\sqrt{673}}{2}\left[9+\frac{\left(x+y+z\right)^2}{3}+6\right]\le\frac{\sqrt{673}}{2}\left(9+3+6\right)=6=9\sqrt{673}\)
Dấu "=" xảy ra khi x =y = z =1
Vậy...
Theo BĐT AM-GM:
\(\sqrt{2019x\left(y+2\right)}\)\(\le\)\(\frac{1}{2}\)(2019x+y+2)
\(\sqrt{2019y\left(z+2\right)}\)\(\le\)\(\frac{1}{2}\)(2019y+z+2)
\(\sqrt{2019z\left(x+2\right)}\)\(\le\)\(\frac{1}{2}\)(2019z+x+2)
=>M\(\le\)\(\frac{1}{2}\)[2019(x+y+z)+(x+y+z)+6]\(\le\)3033
Vậy MaxM=3033 <=>\(\hept{\begin{cases}2019x=y+2\\2019y=z+2\\2019z=x+2\end{cases}}\)
Thay \(z=x+y+1\) vào P ta có:
\(P=\frac{x^3y^3}{\left\{\left[x+y\left(x+y+1\right)\right]\left[y+x\left(x+y+1\right)\right]\left[xy+y+x+z\right]\right\}^2}\)
\(=\frac{x^3y^3}{\left[\left(x+1\right)\left(y+1\right)\left(x+y\right)^2\right]^2}\)
Mà \(x+1\ge2\sqrt{x};y+1\ge2\sqrt{y};x+y\ge2\sqrt{xy}\)
=> \(P\le\frac{x^3y^3}{\left(2\sqrt{x}.2\sqrt{y}.4xy\right)^2}=\frac{1}{256}\)
MaxP=1/256 khi \(a=b=1;c=3\)
Ta đi chứng minh công thức tổng quát: \(f\left(n\right)=\frac{2n+1+\sqrt{n\left(n+1\right)}}{\sqrt{n}+\sqrt{n+1}}=\left(n+1\right)\sqrt{n+1}-n\sqrt{n}\)
Thật vậy: \(\left[\left(n+1\right)\sqrt{n+1}-n\sqrt{n}\right]\left(\sqrt{n}+\sqrt{n+1}\right)=\left(n+1\right)\sqrt{n\left(n+1\right)}-n^2+\left(n+1\right)^2-n\sqrt{n\left(n+1\right)}=2n+1+\sqrt{n\left(n+1\right)}\)Áp dụng, ta được: \(f\left(1\right)+f\left(2\right)+...+f\left(2020\right)=\left(2\sqrt{2}-1\sqrt{1}\right)+\left(3\sqrt{3}-2\sqrt{2}\right)+\left(4\sqrt{4}-3\sqrt{3}\right)+...+\left(2021\sqrt{2021}-2020\sqrt{2020}\right)=2021\sqrt{2021}-1\)