Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Do H∈ phân giác xOyˆ mà HA⊥Ox; HB⊥Oy→HA=HB→ΔHAB cân tại H ( đpcm )
b/ Ta có + ΔOAH=ΔOBH(ch−gn)→OA=OB+ ΔOAC=ΔOBC (c−g−c)→OACˆ=OBCˆ
mà xOyˆ+OACˆ=90o→xOyˆ+OBCˆ=90o
Xét ΔOBM có BOMˆ+OBMˆ=90o→OMBˆ=90o→BC⊥Ox
c/ Xét ΔAOB có AOBˆ=60o;AO=BO(c/m phần b)→ΔAOB đều
đường cao AD đồng thời là phân giác OABˆ→OADˆ=30o
Xét Δ AOD vuông tại D có OADˆ=30o→OD=12OA→OA=2OD ( trong tam giác vuông, đối diện với góc bằng 30o là cạnh bằng 12 cạnh huyền )
tic mình nha
a/ Do H∈H∈ phân giác ˆxOyxOy^ mà HA⊥Ox; HB⊥Oy→HA=HB→ΔHABHA⊥Ox; HB⊥Oy→HA=HB→ΔHAB cân tại H ( đpcm )
b/ Ta có + ΔOAH=ΔOBH(ch−gn)→OA=OB+ ΔOAC=ΔOBC (c−g−c)→ˆOAC=ˆOBC+ ΔOAH=ΔOBH(ch−gn)→OA=OB+ ΔOAC=ΔOBC (c−g−c)→OAC^=OBC^
mà ˆxOy+ˆOAC=90o→ˆxOy+ˆOBC=90oxOy^+OAC^=90o→xOy^+OBC^=90o
Xét ΔOBM có ˆBOM+ˆOBM=90o→ˆOMB=90o→BC⊥OxΔOBM có BOM^+OBM^=90o→OMB^=90o→BC⊥Ox
c/ Xét ΔAOB có ˆAOB=60o;AO=BO(c/m phần b)→ΔAOBΔAOB có AOB^=60o;AO=BO(c/m phần b)→ΔAOB đều
\Rightarrow đường cao AD đồng thời là phân giác ˆOAB→ˆOAD=30oOAB^→OAD^=30o
Xét ΔΔ AOD vuông tại D có ˆOAD=30o→OD=12OA→OA=2ODOAD^=30o→OD=12OA→OA=2OD ( trong tam giác vuông, đối diện với góc bằng30o30o là cạnh bằng 1212 cạnh huyền )
a: Xét ΔOAH vuông tại A và ΔOBH vuông tại B có
OH chung
\(\widehat{AOH}=\widehat{BOH}\)
Do đó; ΔOAH=ΔOBH
Suy ra: HA=HB
b: Ta có: OA=OB
HA=HB
Do đó: OH là đường trung trực của AB
Xét ΔOAB có
OH là đường cao
AD là đường cao
OH cắt AD tại C
Do đó: C là trọng tâm của ΔOAB
Suy ra: BC\(\perp\)Ox