Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ta có:
\(\frac{n+1}{2n+3}\)là phân số tối giản thì:
\(\left(n+1;2n+3\right)=d\)
Điều Kiện;d thuộc N, d>0
=>\(\hept{\begin{cases}2n+3:d\\n+1:d\end{cases}}=>\hept{\begin{cases}2n+3:d\\2n+2:d\end{cases}}\)
=>2n+3-(2n+2):d
2n+3-2n-2:d
hay 1:d
=>d=1
Vỵ d=1 thì.....
Bài 2 :
Để A = (n+2) : (n-5) là số nguyên thì n+2 phải chia hết cho n-5
Mà n-5 chia hết cho n-5
=> (n+2) - (n-5) chia hết cho n-5
=> (n-n) + (2+5) chia hết cho n-5
=> 7 chia hết cho n-5
=> n-5 thuộc Ư(5) = { 1 : -1 ; 7 ; -7 }
Ta có bảng giá trị
n-5 | 1 | -1 | 7 | -7 |
n | 6 | 4 | 12 | -2 |
A | 8 | -6 | 2 | 0 |
KL | TMĐK | TMĐK | TMĐK | TMĐK |
Vậy với n thuộc { -2 ; 4 ; 6 ; 12 } thì A là số nguyên
bài 1 A là số nguyên <=> 3 chia hết cho (x-1) <=> (x-1) thuộc Ư(3) = { 1;-1;3;-3}
<=> x thuộc {2;0;4;-2}
3. Gọi d là ƯCLN(2n + 3, 4n + 8), d ∈ N*
\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(2n+3\right)⋮d\\4n+8⋮d\end{cases}\Rightarrow}\hept{\begin{cases}4n+6⋮d\\4n+8⋮d\end{cases}}}\)
\(\Rightarrow\left(4n+8\right)-\left(4n+6\right)⋮d\)
\(\Rightarrow2⋮d\)
\(\Rightarrow d\in\left\{1;2\right\}\)
Mà 2n + 3 không chia hết cho 2
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(2n+3,4n+8\right)=1\)
\(\Rightarrow\frac{2n+3}{4n+8}\) là phân số tối giản.
a,\(\frac{2}{1.3}+...\frac{2}{99.101}\)
\(=\frac{3-1}{1.3}+...+\frac{101-99}{99.101}\)
\(=\frac{3}{1.3}-\frac{1}{1.3}+...+\frac{101}{99.101}-\frac{99}{99.101}\)
\(=\frac{1}{1}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{101}\)
\(=\frac{1}{1}-\frac{1}{101}\)
\(\frac{100}{101}\)
a) \(\frac{13}{x+3}\)
Để \(\frac{13}{x+3}\) là số nguyên thì 13 phải chia hết cho x + 3
=> x + 3 thuộc Ư (13) = { 1 ; 13 ; - 1 ; - 13 }
=> x thuộc { -2 ; 10 ; - 4 ; -16 }
\(\frac{x-2}{x+5}\)
Ta có: \(\frac{x-2}{x+5}=\frac{x+5-7}{x+5}=\frac{x+5}{x+5}-\frac{7}{x+5}=1-\frac{7}{x+5}\)
Để \(\frac{x-2}{x+5}\) là số nguyên thì \(\frac{7}{x+5}\) phải là số nguyên
=> x + 5 thuộc Ư (7) = { 1 ; 7 ; -1 ; -7 }
=> x thuộc { - 4 ; 2 ; - 6 ; - 12 }
c) \(\frac{2x+3}{x-3}\)
Ta có: \(\frac{2x+3}{x-3}=\frac{2\left(x-3\right)-3}{x-3}=\frac{2\left(x-3\right)}{x-3}-\frac{3}{x-3}=2-\frac{3}{x-3}\)
Để \(\frac{2x+3}{x-3}\) là số nguyên thì \(\frac{3}{x-3}\) phải là số nguyên
=> x - 3 thuộc Ư (3) = { 1 ; 3 ; - 1 ; -3 }
=> x thuộc { 4 ; 6 ; 2 ; 0 }
b) Gọi ƯCLN(3n-2 , 4n-3) = d \(\left(d\ge1\right)\)
Ta có :
\(\begin{cases}3n-2⋮d\\4n-3⋮d\end{cases}\) \(\Rightarrow\begin{cases}4\left(3n-2\right)⋮d\\3\left(4n-3\right)⋮d\end{cases}\) \(\Rightarrow\begin{cases}12n-8⋮d\\12n-9⋮d\end{cases}\)
\(\Rightarrow\left(12n-8\right)-\left(12n-9\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d\le1\) mà \(d\ge1\) => d = 1
Vì ƯCLN(3n-2 , 4n-3) = 1 nên phân số trên tối giản.
Các câu còn lại tương tự
Bài 1:
\(D=\frac{x^2-1}{x+1}=\frac{x\left(x+1\right)-x-1}{x+1}=\frac{x\left(x+1\right)}{x+1}-\frac{x-1}{x+1}=x-\frac{x+1-2}{x+1}\in Z\)
=>2 chia hết x+1
=>x+1 thuộc Ư(2)={1;-1;2;-2}
=>x thuộc {0;-2;1;-3}
Bài 2:
Gọi d là UCLN(2n+3;4n+8)
Ta có:
[2(2n+3)]-[4n+8] chia hết d
=>[4n+6]-[4n+8] chia hết d
=>-2 chia hết d =>d={1;2}
với d=2 ps ko tối giản ->d=1
Vậy ps tối giản