Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. a, \(2^{x+2}.3^{x+1}.5^x=10800\)
\(2^x.2^2.3^x.3.5^x=10800\)
\(\Rightarrow\left(2.3.5\right)^x.12=10800\)
\(\Rightarrow30^x=\frac{10800}{12}=900\)
\(\Rightarrow30^x=30^2\)
\(\Rightarrow x=2\)
b,\(3^{x+2}-3^x=24\)
\(\Rightarrow3^x\left(3^2-1\right)=24\)
\(\Rightarrow3^x.8=24\)\(\Rightarrow3^x=3^1\Rightarrow x=1\)
2, c, Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)
Dấu bằng xảy ra khi \(ab\ge0\)
Ta có: \(\left|x-2017\right|=\left|2017-x\right|\)
\(\Rightarrow\left|x-1\right|+\left|2017-x\right|\ge\left|x-1+2017-x\right|\)\(=\left|2016\right|=2016\)
Dấu bằng xảy ra khi \(\left(x-1\right)\left(2017-x\right)\ge0\)\(\Rightarrow2017\ge x\ge1\)
Vậy \(Min_{BT}=2016\)khi \(2017\ge x\ge1\)
d, Áp dụng BĐT \(\left|a\right|-\left|b\right|\le\left|a-b\right|\forall a,b\inℝ\)
Dấu bằng xảy ra khi \(b\left(a-b\right)\ge0\)
Ta có \(B=\left|x-2018\right|-\left|x-2017\right|\le\left|x-2018-x+2017\right|\)
\(\Rightarrow B\le1\)
Dấu bằng xảy ra khi \(\left(x-2017\right)\left[\left(x-2018\right)-\left(x-2017\right)\right]\ge0\)
\(\Rightarrow x\le2017\)
Vậy \(Max_B=1\) khi \(x\le2017\)
để BT \(\frac{5}{\sqrt{2x+1}+2}\) nguyên thì \(\sqrt{2x+1}+2\inƯ\left(5\right)\)
suy ra \(\sqrt{2x+1}+2\in\left\{-5;-1;1;5\right\}\)
\(\Rightarrow\sqrt{2x+1}\in\left\{-7;-3;-1;3\right\}\)
Mà \(\sqrt{2x+1}\ge0\) nên \(\sqrt{2x+1}\)chỉ có thể bằng 3
\(\Rightarrow2x+1=9\Rightarrow x=4\)( thỏa mãn điều kiện \(x\ge-\frac{1}{2}\))
Đây là cách lớp 9. Mk đang phân vân ko biết giải theo cách lớp 7 thế nào!!!!
Gọi số bi của 3 bạn An, Bình, Cường lần lượt là x,y,z .Ta có
x+y+z=74
2x=y
5y=4z
giải hệ tìm dc x,y,z.
Đề nhầm nhé : tỉ lệ của số bi của An và Bình là 5 và 6 chứ ko phải 3 và 6
Gọi số bi của 3 bạn An, Bình, Cường lần lượt là x,y,z
Ta có: \(\frac{x}{5}=\frac{y}{6}\Rightarrow\frac{x}{20}=\frac{y}{24}\)
\(\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{24}=\frac{z}{30}\)
\(\Rightarrow\frac{x+y+z}{20+24+30}=\frac{74}{74}=1\)
\(\Rightarrow\hept{\begin{cases}x=20\\y=24\\z=30\end{cases}}\)
Vậy số bi của 3 bn An, Bình, Cường lần lượt là 20, 24 và 30 viên bi
\(\Rightarrow\frac{x+y+z}{2+5+4}\)
Bài 1: bấm máy
Bài 2:
a)\(2x-3=11\) b)\(\frac{x}{14}=\frac{27}{2}\)
\(\Rightarrow2x=14\Rightarrow x=7\) \(\Rightarrow x=\frac{27\cdot14}{2}=189\)
Bài 3:
Gọi số bi 2 bn đức và dũng lần lượt là a,b (a,b\(\in\)N*)
THeo bài ra ta có:
\(a+b=33;\frac{a}{4}=\frac{b}{7}\)
Áp dụng tc dãy tỉ số bằng nhau ta có:
\(\frac{a}{4}=\frac{b}{7}=\frac{a+b}{4+7}=\frac{33}{11}=3\)
\(\Rightarrow\hept{\begin{cases}\frac{a}{4}=3\Rightarrow a=3\cdot4=12\\\frac{b}{7}=3\Rightarrow b=3\cdot7=21\end{cases}}\) (thỏa mãn)
Vậy....
Bài 4: \(\frac{a+b-c}{c}=\frac{c+a-b}{b}=\frac{b+c-a}{a}\)
\(\Rightarrow\frac{a+b-c}{c}+2=\frac{c+a-b}{b}+2=\frac{b+c-a}{a}+2\)
\(\Rightarrow\frac{a+b+c}{c}=\frac{a+b+c}{b}=\frac{a+b+c}{a}\)
- Xét a+b+c\(\ne0\) suy ra a=b=c khi đó \(A=2\cdot2\cdot2=8\)
- Xét a+b+c=0 suy ra \(\hept{\begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}}\)
Khi đó \(A=\frac{a+b}{b}\cdot\frac{b+c}{c}\cdot\frac{c+a}{a}=\frac{-c}{b}\cdot\frac{-a}{c}\cdot\frac{-b}{a}=-1\)
Bài 1:
a) Ta có: \(2^{x+2}\cdot3^{x+1}\cdot5^x=10800\)
\(\Leftrightarrow2^x\cdot4\cdot3^x\cdot3\cdot5^x=10800\)
\(\Leftrightarrow30^x=900\)
hay x=2
Vậy: x=2