K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2018

45o

65o

70o

Bài làm

a) Xét tam ABC vuông tại A có:

\(\widehat{ACB}+\widehat{ABC}=90^0\)( hai góc phụ nhau )

hay \(\widehat{ACB}+60^0=90^0\)

=> \(\widehat{ACB}=90^0-60^0=30^0\)

b) Xét tam giác ABE và tam giác DBE có:

\(\widehat{BAE}=\widehat{BDE}=90^0\)

Cạnh huyền: BE chung

Cạnh góc vuông: AB = BD ( gt )

=> Tam giác ABE = tam giác DBE ( cạnh huyền - cạnh góc vuông )

=> \(\widehat{ABE}=\widehat{DBE}\)( hai góc tương ứng )

=> BI là tia phân giác của góc BAC

Mà I thược BE

=> BE là tia phân giác của góc BAC

Gọi I là giao điểm BE và AD

Xét tam giác AIB và tam giác DIB có:

AB = BD ( gt )

\(\widehat{ABE}=\widehat{DBE}\)( cmt )

BI chung

=> Tam giác AIB = tam giác DIB ( c.g.c )

=> AI = ID                                                                 (1) 

=> \(\widehat{BIA}=\widehat{BID}\)

Ta có: \(\widehat{BIA}+\widehat{BID}=180^0\)( hai góc kề bù )

Hay \(\widehat{BIA}=\widehat{BID}=\frac{180^0}{2}=90^0\)

=> BI vuông góc với AD tại I                                                       (2) 

Từ (1) và (2) => BI là đường trung trực của đoạn AD

Mà I thược BE

=> BE là đường trung trực của đoạn AD ( đpcm )

c) Vì tam giác ABE = tam giác DBE ( cmt )

=> AE = ED ( hai cạnh tương ứng )

Xét tam giác AEF và tam giác DEC có:

\(\widehat{EAF}=\widehat{EDC}=90^0\)

AE = ED ( cmt )

\(\widehat{AEF}=\widehat{DEF}\)( hai góc đối )

=> Tam giác AEF = tam giác DEC ( g.c.g )

=> AF = DC 

Ta có: AF + AB = BF

          DC + BD = BC

Mà AF = DC ( cmt )

AB = BD ( gt )

=> BF = BC 

=> Tam giác BFC cân tại B

=> \(\widehat{BFC}=\widehat{BCF}=\frac{180^0-\widehat{FBC}}{2}\)                                                          (3) 

Vì tam giác BAD cân tại B ( cmt )

=> \(\widehat{BAD}=\widehat{BDA}=\frac{180^0-\widehat{FBC}}{2}\)                                               (4)

Từ (3) và (4) => \(\widehat{BAD}=\widehat{BFC}\)

Mà Hai góc này ở vị trí đồng vị

=> AD // FC

d) Xét tam giác ABC vuông tại A có:

\(\widehat{ACB}+\widehat{ABC}=90^0\)( hai góc phụ nhau )                              (5)

Xét tam giác DEC vuông tại D có:

\(\widehat{DEC}+\widehat{ACB}=90^0\)( hai góc phụ nhau )                                (6)

Từ (5) và (6) => \(\widehat{ABC}=\widehat{DEC}\)

Ta lại có:

\(\widehat{ABC}>\widehat{EBC}\)

=> AC > EC

Mà \(\widehat{EBC}=\frac{1}{2}\widehat{ABC}\)

=> EC = 1/2 AC. 

=> E là trung điểm AC

Mà EC = EF ( do tam giác AEF = tam giác EDC )

=> EF = 1/2AC 

=> AE = EC = EF 

Và AE = ED ( cmt )

=> ED = EC

Mà EC = 1/2AC ( cmt )

=> ED = 1/2AC

=> 2ED = AC ( đpcm )

Mình chứng minh ra kiểu này cơ. không biết đề đúng hay sai!?? 

18 tháng 3 2020

Bài 1

a. (Tự vẽ hình)

Áp dụng định lí Py-ta-go, ta có:

BC2= AB2 + AC2

<=> BC2= 62 + 82

<=> BC2= 100

=> BC = 10 (cm)

18 tháng 3 2020

Bài 1

b. Áp dụng định lí Py-ta-go, ta có:

AC= AH2 + HC2

<=> 8= 4,82 + HC2

<=> 64 = 23,04 + HC2

=> HC= 64 - 23,04 

=> HC= 40,96

=> HC = 6,4 (cm)

=> HB = BC - HC = 10 - 6,4 = 3,6 (cm)

30 tháng 5 2017

A C B D M

Gọi M là giao của AC và BD

Ta có: AC = 12 cm

M là trung điểm AC => AM = MC = 6 cm

Ta có: BD = 16 cm

M là trung điểm BD => BM = MD = 8 cm

Xét hai tam giác vuông ABM và CBM có:

BM: cạnh chung

AM = CM (cmt)

=> tam giác ABM = tam giác CBM (1)

Xét hai tam giác CBM và ADM có:

AM = MC (cmt)

BMC = AMD (đđ)

BM = MD (cmt)

=> tam giác CBM = tam giác ADM (2)

Xét hai tam giác vuông ADM và CDM có:

CM: chung

AM = MC (cmt)

=> tam giác ADM = tam giác CDM (3)

Từ (1);(2);(3)

=> bốn tam giác ABM; BCM; CAM; DAM bằng nhau

=> AB = BC = CD = DA

Ta có: tam giác ABM vuông

theo định lí pytago ta có:

AB2 = AM2 + BM2

=> AB2 = 62 + 82

=> AB2 = 100

=> AB = 10 cm

Có: AB = BC = CD = DA = 10 cm

Vậy: AB = 10 cm

BC = 10 cm

CD = 10 cm

DA = 10 cm.

23 tháng 1 2022

Answer:

Bài 1:

Vì AB = AC nên tam giác ABC cân tại A

=> Góc ABC = góc ACB = (180 độ - góc BAC) : 2 = 30 độ

Ta gọi DF là trung trực của AC

=> DF vuông góc AC = F; FC = FA

Mà DF là trung trực của AC

=> Góc ADA = 2 góc CDF = 2 . (180 độ - góc DCF - góc CFD) = 120 độ

Xét tam giác ACE và tam giác BAD:

BD = AE

AC = AB

Góc EAC = góc DBA = 30 độ

=> Tam giác ACE = tam giác BAD (c.g.c)

=> Góc CED = góc ADB = góc EDC = 180 độ - góc CDA = 60 độ

Bài 2:

Có: IK là trung trực của BC

=> IB = IC

Tương tự ID = IA mà AB = CD

=> Tam giác IAB = tam giác IDC (c.c.c)

=> Góc IAB = góc IDA = góc IAC

=> AI là tia phân giác của góc BAD

Mà AI là tia phân giác của góc A

IE vuông góc AB; IH vuông góc AC

=> IE = IH

\(\Rightarrow BE^2=IB^2-IE^2=IC^2-IH^2=HC^2\)

=> BE = HC

Mà IE = IH; góc IEA = góc IHA = 90 độ; góc EAI = góc IAH

=> Tam giác AEI = tam giác AHI (g.c.g)

=> AE = AH mà IE = IH

=> IA là trung trực của EH

Có: CF song song AB nên góc FHC = góc AHE = góc AEH = góc HFC

=> Tam giác CHF cân ở C

=> CF = CH

=> CF = BE

Mà KB = KC; góc EBK = góc KCF

=> Tam giác BKE = tam giác CKF (c.g.c)

=> Góc BKE = góc FKC

=> E, F, K thẳng hàng

11 tháng 5 2017

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Gọi I là giao điểm của AC và BD

Ta có: I là trung điểm AC nên IA = IC = AC/2=6cm

Vì I là trung điểm của BD nên IB = ID = BD/2=8cm

Áp dụng định lí pitago vào tam giác vuông AIB ta có:

AB2=IA2+IB2

AB2=62+82=36+64=100

Vậy AB = 10 cm

Mặt khác: ΔIAB=ΔIAD=ΔICB=ΔICD(c.g.c)

Suy ra: AD = BC = CD = AB = 10cm

12 tháng 5 2019

GIÚP MÌNH VỚI

@camonnn <3

12 tháng 5 2019

DfGnqlD.png

b.

Trên tia đối của MA lấy điểm N sao cho MA=MN.

Kẻ \(DF\perp AM\left(F\in AM\right)\)

Tí nữa tớ hướng dẫn cho