Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) x2+5x-6=0
= x2+6x-x-6=0
=x(x+6)-(x+6)=0
=(x+6)(x-1)=0
<=> x+6=0 hoặc x-1=0
1) x+6=0 2) x-1=0
<=>x=-6 <=> x=1
vậy tập nghiệm của phương trình là ...
P/s : Mình làm đại thôi :
Ta có :
\(2x+2y=8\Rightarrow2\left(x+y\right)=8\Rightarrow x+y=4\)
\(\hept{\begin{cases}3x+2y=-3\\2x+2y=8\end{cases}}\)
\(\Rightarrow\left(3x+2y\right)-\left(2x+2y\right)=-3-8\)
\(\Rightarrow x=-11\)
Mà \(x+y=4\)
\(\Rightarrow y=4-\left(-11\right)=15\)
Vậy \(x=-11;y=15\)
A=(\(3\sqrt{3}-2\sqrt{3}+6\)).\(\sqrt{3}-4\sqrt{3}\)
=\(\sqrt{3}\left(3-2+2\sqrt{3}\right)\).\(\sqrt{3}-4\sqrt{3}\)
=3(\(3-2+2\sqrt{3}\))-4\(\sqrt{3}\)
=3+2\(\sqrt{3}\)
a)\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+21}\)
=\(\sqrt{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+16}\ge6\)(1)
mặt khác 5-2x-x2=6-(x+1)2\(\le6\)(2)
từ (1) và (2)=>dấu = xảy ra khi VP =6 =VTtức x=-1
b)\(\sqrt{3x^2+6x+12}\)+\(\sqrt{5x^4+10x^2+9}\)
=\(\sqrt{3\left(x+1\right)^2+9}+\sqrt{5\left(x^2+1\right)^2+4}>5\)(x2+1>0)(1')
mặt khác VP=5-2(x+1)2\(\le\)5(2')
từ (1') và (2')=> pt vô nghiệm
Bài 3 nhé bạn đặt cái căn đầu là a ,căn sau là b
a+b=x
ab=1
Rồi tính lần lượt a3 +b3 bằng ẩn x hết
và mũ 4 cũng vậy rồi lấy 2 số nhân nhau .Bđ là ra
a) \(3x^2-7x+2=0\Leftrightarrow\left(3x^2-6x\right)-\left(x-2\right)=0\Leftrightarrow3x\left(x-2\right)-\left(x-2\right)=0\Leftrightarrow\left(3x-1\right)\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}3x-1=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{3}\\x=2\end{cases}}\)Vậy phương trình có 2 nghiệm \(\left\{\frac{1}{3};2\right\}\)
b) \(x^4-5x+4=0\Leftrightarrow\left(x^4-x\right)-4\left(x-1\right)=0\Leftrightarrow x\left(x-1\right)\left(x^2+x+1\right)-4\left(x-1\right)=0\Leftrightarrow\left(x-1\right)\left(x^3+x^2+x-4\right)=0\Leftrightarrow\orbr{\begin{cases}x-1=0\\x^3+x^2+x-4=0\end{cases}}\)Xét phương trình: \(x^3+x^2+x-4=0\)
Đặt \(x=y-\frac{1}{3}\)thì phương trình trở thành \(y^3+\frac{18}{27}y-\frac{115}{27}=0\)có các hệ số \(a=\frac{18}{27},b=\frac{-115}{27}\)
\(\Rightarrow D=\left(\frac{b}{2}\right)^2+\left(\frac{a}{3}\right)^3=\left(\frac{\frac{-115}{27}}{2}\right)^2+\left(\frac{\frac{18}{27}}{3}\right)^3=\frac{491}{108}\)
\(\Rightarrow y=\sqrt[3]{\frac{115}{54}+\sqrt{\frac{491}{108}}}+\sqrt[3]{\frac{115}{54}-\sqrt{\frac{491}{108}}}\)
\(\Rightarrow x=\sqrt[3]{\frac{115}{54}+\sqrt{\frac{491}{108}}}+\sqrt[3]{\frac{115}{54}-\sqrt{\frac{491}{108}}}-\frac{1}{3}\)
Vậy phương trình có 2 nghiệm \(\left\{1;\sqrt[3]{\frac{115}{54}+\sqrt{\frac{491}{108}}}+\sqrt[3]{\frac{115}{54}-\sqrt{\frac{491}{108}}}-\frac{1}{3}\right\}\)
c) \(\hept{\begin{cases}\sqrt{5}x-2y=7\\x-\sqrt{5}y=2\sqrt{5}\end{cases}}\Leftrightarrow\hept{\begin{cases}x-\frac{2\sqrt{5}}{5}y=\frac{7\sqrt{5}}{5}\left(1\right)\\x-\sqrt{5}y=2\sqrt{5}\left(2\right)\end{cases}}\)
Lấy (1) - (2), ta được: \(\frac{3\sqrt{5}}{5}y=-\frac{3\sqrt{5}}{5}\Leftrightarrow y=-1\). Từ đó tìm được \(x=\sqrt{5}\)
Vậy hệ có 1 nghiệm \(\left(x;y\right)=\left(\sqrt{5};-1\right)\)
4 \(x\sqrt{y-1}=\sqrt{x}\sqrt{xy-x}\le\frac{xy}{2}\)
5. cosi 1+x^2>=2x
=>(1+x^2)^2>=4x^2
1+1/y^4>=2/y^2
=>8>=8x^2/y^2
=>y^2>=x^2
cm tt => x^2>=y^2
c10 \(\sqrt{x^2-y^2-2x-2y}=\sqrt{\left(x-y\right)\left(x+y-2\right)}\le x-1\)
c13 pt 2 vô n
Đề giống sai quá. Đã cho hệ mà còn cho 2 ẩn độc lập với nhau vậy. Nếu độc lập vậy thì cho phương trình chứ cho hệ làm chi
bài 1
a, 2x2-5x-3=0
đenta=52-4.(-3).2=25+24=49>0
=>x1=3 , x2=-1/2
Bài 1a :
a, \(2x^2-5x-3=0\)
Ta có : \(\Delta=25-4.2.\left(-3\right)=25+24=49>0\)
Vậy pt có 2 nghiệm phân biệt :
\(x_1=\frac{5-7}{4}=-\frac{1}{2};x_2=\frac{5+7}{4}=3\)